A类电气装置接地的一般规定
1 电力系统中电气装置、设施的某些可导电部分应接地。接地装置应充分利用自然接地极接地,但应校验自然接地极的热稳定。按用途接地有下列4种: a) 工作(系统)接地; b) 保护接地; c) 雷电保护接地; d) 防静电接地。2 发电厂、变电所内,不同用途和不同电压的电气装置、设施,应使用一个总的接地装置,接地电阻应符合其中最小值的要求。 注:本标准中接地电阻除另外注明外,均指工频接地电阻。3 设计接地装置时,应考虑土壤干燥或冻结等季节变化的影响,接地电阻在四季中均应符合本标准的要求,但雷电保护接地的接地电阻,可只考虑在雷季中土壤干燥状态的影响。接地装置的接地电阻可按附录A计算。4 确定发电厂、变电所接地装置的型式和布置时,考虑保护接地的要求,应降低接触电位差和跨步电位差,并应符合下列要求。 a) 在110kV及以上有效地接地系统和6~35kV低电阻接地系统发生单相接地或同点两相接地时,发电厂、变电所接地装置的接触电位差和跨步电位差
浅析防雷接地及电气安全
在任何给定时刻,世界上都有1800场雷电在发生,每秒大约有100次雷击。在美国,雷电每年会造成大约150人死亡和250人受伤。全世界每年有4000多人惨遭雷击。在雷电发生频率呈现平均水平的平坦地形上,每座300英尺高的建筑物平均每年会被击中一次。每座1200英尺的建筑物,比如广播或者电视塔,每年会被击中20次,每次雷击通常会产生6亿伏的高压。 每个从云层到地面的闪电实际上包含了在60毫秒间隔内发生的3到5次独立的雷击,第一次雷击的峰值电流大约为2万安培,后续雷击的峰值电流减半。最后一次雷击之后,可能会有大约150安培的连续电流,持续时间达100毫秒。 经测量,这些雷击的上升时间大约为200纳秒或者更快。通过2万安培和200纳秒,不难计算得到dI/dt的值是每秒10^11安培。可见雷电是不可阻止的其危害也是无穷大的,所以我们要不但提高防雷技术,提高防雷意识并曾加防雷措施。
防雷接地与电气接地的区别
防雷顾名思义就是防止雷电直击或侧击,接地就是将雷电流引入大地。电气接地分为保护接地和工作接地。保护接地是防止设备漏电引发外壳带电发生触电事故,将漏电电流引入大地。工作接地是为了设备的正常运行,将中性点直接与大地连接,形成0电位点(比如变压器)。 一、接地 接地(earthing)接地指电力系统和电气装置的中性点、电气设备的外露导电部分和装置外导电部分经由导体与大地相连。可以分为工作接地、防雷接地和保护接地。 二、工作接地 工作接地就是由电力系统运行需要而设置的(如中性点接地),因此在正常情况下就会有电流长期流过接地电极,但是只是几安培到几十安培的不平衡电流。在系统发生接地故障时,会有上千安培的工作电流流过接地电极,然而该电流会被继电保护装置在0.05~0.1s内切除,即使是后备保护,动作一般也在1s以内。 三、防雷接地 防雷接地是为了消除过电压危险影响而设的接地,如避雷针、避雷线和避雷器的接地。防雷接地只是在雷电冲击的作用下才会有电流流过,流过防雷接地电极的雷电流幅值可达数十至上百千安
智能楼宇的电气维护与接地
在修建物供配电规划中,接地系统规划占有主要的位置,因为它关系到供电系统的牢靠性,安全性。不论哪类修建物,在供电规划中总包括有接地系统规划。并且,跟着修建物的请求不一样,各类设备的功用不一样,接地系统也相应不一样。特别进入90年代后,很多的智能化楼宇的出现对接地系统规划提出了很多新的内容。在常用的几种接当地法中,哪一种能够适宜智能化楼宇呢?咱们无妨剖析一下下面几种接地系统。 1 TN-C系统 TN-C系统被称之为三相四线系统,该系统中性线N与维护接地PE合二为一,通称PEN线。这种接地系统虽对接地毛病灵敏度高,线路经济简略,但它只适宜用于三相负荷较平衡的场所。智能化大楼内,单相负荷所占比重较大,难以实现三相负荷平衡,PEN线的不平衡电流加上线路中存在着的因为荧光灯、晶闸管(可控硅)等设备引起的高次谐波电流,在非毛病情况下,会在中性线N上叠加,使中性线N电压动摇,且电流时大时小极不安稳,形成中性点接地电位不安稳