1 前言 敞开式全断面岩石掘进机(简称TBM))是集机械、电子、液压、激光、控制等技术于一体的高度机械化和自动化的大型隧道开挖配套设备,其最大的优点是快速,通常掘进速率为常规钻爆法的3~6倍。 南疆铁路二线吐库段中天山隧道位于新疆境内的天山山脉,穿越中天山北支博尔托乌山,海拔1100~2951m,其最大埋深为1700m;为两座单线隧道,左线长22449m,右线长22467m,全隧道为单面上坡,除出口308m位于曲线上外其余均位于直线上,左、右线间距为36m;工程地质地形条件十分复杂。自2005年起,在隧道勘察设计中广泛吸取了建设管理、科研和施工各方的意见,先后就钻爆法、TBM法、钻爆与TBM联合施工法展开了深入的比较研究,对各方案的诸多技术难题进行了分析论证。根据中天山隧道地质地形条件,若采用钻爆法方案施工,很难合理设置辅助坑道,工期长,施工通风极困难。因此,最终推荐采用TBM法加钻爆法的施工方案,即采用2台TBM从左、右线隧道进口端施工(在隧道右线掘进11km,在左线掘进10km),出口端采用钻爆法施工。隧道已于2013年贯通,取得了良好的社会经济效益。本文就中天山隧道TBM掘进施工的适应性进行分析总结,期望为类似隧道选择TBM掘进施工提供借鉴。
敞开式全断面岩石掘进机(简称TBM))是集机械、电子、液压、激光、控制等技术于一体的高度机械化和自动化的大型隧道开挖配套设备,其最大的优点是快速,通常掘进速率为常规钻爆法的3~6倍。
南疆铁路二线吐库段中天山隧道位于新疆境内的天山山脉,穿越中天山北支博尔托乌山,海拔1100~2951m,其最大埋深为1700m;为两座单线隧道,左线长22449m,右线长22467m,全隧道为单面上坡,除出口308m位于曲线上外其余均位于直线上,左、右线间距为36m;工程地质地形条件十分复杂。自2005年起,在隧道勘察设计中广泛吸取了建设管理、科研和施工各方的意见,先后就钻爆法、TBM法、钻爆与TBM联合施工法展开了深入的比较研究,对各方案的诸多技术难题进行了分析论证。根据中天山隧道地质地形条件,若采用钻爆法方案施工,很难合理设置辅助坑道,工期长,施工通风极困难。因此,最终推荐采用TBM法加钻爆法的施工方案,即采用2台TBM从左、右线隧道进口端施工(在隧道右线掘进11km,在左线掘进10km),出口端采用钻爆法施工。隧道已于2013年贯通,取得了良好的社会经济效益。本文就中天山隧道TBM掘进施工的适应性进行分析总结,期望为类似隧道选择TBM掘进施工提供借鉴。
2 隧道TBM施工适应性
根据西康铁路秦岭隧道TBM掘进速度与岩石强度、耐磨性及岩体完整程度相关性的研究,一般而言:
(1)TBM最适合掘进的岩石抗压强度为30~120MPa。
(2)TBM掘进速度的高低主要取决于岩体的完整程度,并以较完整和较破碎状态(KV=0.45~0.75)为最佳适用范围。
(3)岩石耐磨性指数越高,岩石耐磨性越好,TBM掘进效率越低(耐磨等级划分见表1)。
表1 Ab与定性划分的岩石耐磨性的对应关系
在中低耐磨性的岩石中TBM的施工进度一般能够达到350~500m/月,在强耐磨性的岩石中施工进度一般能够达到250~400m/月。
3 中天山隧道岩性条件及岩体完整性条件
3.1岩性条件
除通过三条区域深大断裂及七条次级断裂带的构造岩外,隧道通过的地层岩性主要为泥盆系片岩夹大理岩、绢云千枚岩,志留系变质砂岩与片岩互层及中元古界混合岩夹片麻岩、片岩夹大理岩,并分布有华力西期花岗岩、闪长岩。其主要物理力学指标见表2。
由表2可见,除闪长岩、部分变质砂岩和部分大理岩强度高于120MPa,以及部分绢云母千枚岩强度低于30MPa外,绝大部分岩石饱和单轴抗压强度均在30~120MPa之间。
岩石的耐磨性指标为2.73~5.48,多为低—中耐磨性,花岗岩为强耐磨性。
3.2岩体完整性
中天山隧道通过区域性深大断裂(F)3条,次级断裂(f)7条,断层破碎带主要分布于隧道出口段,进口段断层分布较少。由于中天山隧道所处地质构造位置及经历的构造运动的差异,节理发育程度也存在较大区域性差异。根据现场统计的单位体积节理数,隧道围岩完整性指标如表3所示。
由表3可见,除通过三条区域深大断裂及七条次级断裂带的构造岩外,隧道围岩完整性多呈较完整—较破碎状态。
4 中天山隧道TBM掘进施工适应性及工程实践
表2 岩石主要物理力学指标统计
表3 中天山隧道岩体完整性指标
4.1中天山隧道TBM施工适应性分析
(1)三条区域深大断裂及七条次级断裂带的构造岩地段,TBM可能遭遇大塌方、围岩大变形、突发大涌水,导致TBM被埋、被卡或被淹的危害,因此TBM不适宜在以上类型的地段中应用。
(2)除闪长岩、部分变质砂岩和部分大理岩强度高于120MPa,以及部分绢云母千枚岩强度低于30MPa外,绝大部分岩石饱和单轴抗压强度均在30~120MPa之间,适宜采用TBM施工。
(3)除通过三条区域深大断裂及七条次级断裂带的构造岩外,隧道围岩完整性多呈较完整—较破碎状态,适于采用TBM掘进施工。
综上所述,除三条区域深大断裂及七条次级断裂带的构造岩带、闪长岩,以及部分强度高于120MPa的变质砂岩和大理岩、部分强度低于30MPa的绢云母千枚岩带外,其余隧道段适于采用TBM掘进施工。
4.2中天山隧道TBM掘进施工工程实践
中天山左、右线隧道施工采用的TBM在进场前已分别掘进施工了近10km,经大修进场后机器状况良好。TBM经过志留系下统变质砂岩与片岩互层和角斑岩地段时,施工相对比较顺利,掘进速度也比较理想,基本能够保证预期的施工进度(表4)。
表4 中天山隧道TBM施工进度统计
TBM在施工了5.2km后进入了强耐磨性的花岗岩地段,逐渐遇到了一些困难,致使掘进速度降低(表4)。主要原因是:花岗岩岩质坚硬、耐磨性高、岩体完整;碴体尺寸减小,多呈粉末状,刀具磨损率增大,刀具更换频繁。后经采用高质量和高耐磨性能的刀具,增大了TBM的总推力(20MPa以上),较好地解决了TBM机掘进效率降低的问题。
5 结论
(1)TBM法施工比钻爆法施工具有快速、优质、安全、环保和节能减排的特点,若地质条件适宜,深埋长隧道的施工应首选TBM法。
(2)除通过三条区域深大断裂及七条次级断裂带的构造岩、闪长岩,以及部分强度高于120MPa的变质砂岩和大理岩、部分强度低于30MPa的绢云母千枚岩外,其余隧道段围岩岩石强度在30~120MPa之间,围岩完整性多呈较完整至较破碎状态,适于采用TBM掘进施工。
(3)岩质坚硬、耐磨性高、岩体完整,是造成中天山隧道花岗岩隧道段掘进速度降低的主要原因。采用高质量和高耐磨性能的刀具、增大TBM的总推力,是提高TBM掘进效率的有效途径。