Unsaturated Soil Mechanics in Engineering Practice (非饱和土力学工程实践)
co1453471713560
2016年01月23日 11:24:16
来自于建筑施工
只看楼主

本帖最后由 csccbjs 于 2016-1-28 21:22 编辑 非饱和土力学工程实践

本帖最后由 csccbjs 于 2016-1-28 21:22 编辑

非饱和土力学工程实践


F.png

11546ec0ad00f155d486.pdf
25.9 MB
立即下载
免费打赏
csccbjs
2016年01月28日 21:16:25
3楼
本帖最后由 csccbjs 于 2016-1-28 22:24 编辑

Foreword xiii
Preface xv
Acknowledgments xvii
CHAPTER 1 Theory to Practice of Unsaturated Soil Mechanics 1
1.1 Introduction 1
1.2 Moisture and Thermal Flux Boundary Conditions 6
1.3 Determination of Unsaturated Soil Properties 8
1.4 Stages in Moving Toward Implementation 9
1.5 Need for Unsaturated Soil Mechanics 11
1.6 Partial Differential Equations in Soil Mechanics 17
1.7 Engineering Protocols for Unsaturated Soils 26
CHAPTER 2 Nature and Phase Properties of Unsaturated Soil 29
2.1 Introduction 29
2.2 Soil Classification 34
2.3 Phase Properties 48
2.4 Volume-Mass Variables 66
2.5 Soil Compaction 73
2.6 Volume-Mass Relations When Mass Is Lost from System 76
CHAPTER 3 State Variables for Unsaturated Soils 80
3.1 Introduction 80
3.2 Basis for Stress State Variables 84
3.3 Stress State Variables for Unsaturated Soils 87
3.4 Representation of Stress States 94
3.5 Equations for Mohr Circle 98
3.6 Role of Osmotic Suction 105
CHAPTER 4 Measurement and Estimation of State Variables 109
4.1 Introduction 109
4.2 Measurement of Soil Suction 109
4.3 Measurement of Total Suction 149
4.4 Measurement of Osmotic Suction 164
4.5 Measurement of In Situ Water Content 165
4.6 Estimation of Soil Suction 169
CHAPTER 5 Soil-Water Characteristic Curves for Unsaturated Soils 184
5.1 Introduction 184
5.2 Volume-Mass Constitutive Relations 190
5.3 Equations for SWCC 200
5.4 Regression Analysis on SWCC Equations 214
5.5 Hysteresis, Initialization, and Interpretation of SWCC 217
5.6 Pham and Fredlund (2011) Equation for Entire SWCC 224
5.7 Gitirana and Fredlund (2004) SWCC 231
5.8 Measurement of SWCC Using Pressure Plate Devices 234
5.9 Single-Specimen Pressure Plate Devices for Geotechnical Engineering 242
5.10 Vacuum Desiccators for High Suctions 249
5.11 Use of Chilled-Mirror or Dew-Point Method 251
5.12 Estimation of SWCC 253
5.13 Two-Point Method of Estimating SWCC 263
5.14 Correlation of Fitting Parameters to Soil Properties 265
5.15 Application of SWCC 269
5.16 Guidelines and Recommendations for Engineering Practice 271
CHAPTER 6 Ground Surface Moisture Flux Boundary Conditions 273
6.1 Introduction 273
6.2 Climatic Classification for a Site 274
6.3 Boundary Value Framework for Near-Ground-Surface Design 278
6.4 Challenges of Numerical Modeling Ground Surface Moisture Flux Conditions 321
CHAPTER 7 Theory of Water Flow through Unsaturated Soils 327
7.1 Introduction 327
7.2 Theory of Flow of Water 327
7.3 Darcy’s Law for Unsaturated Soils 331
7.4 Partial Differential Equations for Steady-State Water Flow 344
7.5 Partial Differential Equations for Transient Seepage 351
7.6 Direct Measurement of Water Flow Properties 354
CHAPTER 8 Solving Saturated/Unsaturated Water Flow Problems 375
8.1 Introduction 375
8.2 Estimation of Permeability Function 375
8.3 Application to Saturated-Unsaturated Water Flow Problems 397
8.4 Conditions under Which Matric Suction Can Be Maintained 437
CHAPTER 9 Air Flow through Unsaturated Soils 450
9.1 Introduction 450
9.2 Theory of Free Air Flow 450
9.3 Fick’s Law and Darcy’s Law for Air Flow 451
9.4 Diffusion of Air through Water 458
9.5 Other Components of Air Flow 460
9.6 Partial Differential Equations for Air Flow through Unsaturated Soils 461
9.7 Direct Measurement of Air Coefficient of Permeability 465
9.8 Direct Measurement of Air Diffusion through Water 467
9.9 Indirect Estimation of Air Flow Properties 472
9.10 Applications to Saturated-Unsaturated Air Flow Problems 480
CHAPTER 10 Heat Flow Analysis for Unsaturated Soils 487
10.1 Introduction 487
10.2 Theory of Heat Flow 488
10.3 Theory of Freezing and Thawing Soils 492
10.4 Formulation of Partial Differential Equations for Conductive Heat Flow 495
10.5 Direct Measurement of Thermal Properties 500
10.6 Estimation Procedures for Thermal Properties 505
10.7 Applications to Thermal Problems 510
10.8 One-Dimensional Heat Flow in Unfrozen and Frozen Soils 511
10.9 Two-Dimensional Heat Flow Example Involving Chilled Pipeline 511
10.10 Two-Dimensional Heat Flow Example with Surface Temperatures above and below Freezing 512
10.11 Aldrich (1956) Example of Vertical Column 516
CHAPTER 11 Shear Strength of Unsaturated Soils 520
11.1 Introduction 520
11.2 Theory of Shear Strength 520
11.3 Measurement of Shear Strength 536
11.4 Special Equipment Design Considerations 541
11.5 Triaxial Test Procedures for Unsaturated Soils 551
11.6 Interpretation of Triaxial Test Results 554
11.7 Direct Shear Tests 565
11.8 Typical Laboratory Test Results 567
11.9 Selection of Strain Rate 578
CHAPTER 12 Shear Strength Applications in Plastic and Limit Equilibrium 588
12.1 Introduction 588
12.2 Estimation of Shear Strength Functions for Unsaturated Soils 588
12.3 Application to Practical Shear Strength Problems in Geotechnical Engineering 612
12.4 Bearing Capacity 626
12.5 Slope Stability 632
12.6 Optimization Procedures to Solve for Factor of Safety 642
12.7 Application of Slope Stability Analyses 651
12.8 Hazard Assessment and Decision Analysis Related to Slope Instability 662
CHAPTER 13 Stress-Deformation Analysis for Unsaturated Soils 666
13.1 Introduction 666
13.2 Concepts of Volume Change and Deformation 670
13.3 Volume-Mass Constitutive Relations 673
13.4 Compressibility Form for Unsaturated Soil Constitutive Relations 679
13.5 Relationship Among Volumetric Deformation Coefficients 685
13.6 Pham-Fredlund Volume-Mass Constitutive Model (2011a) 693
13.7 Formulation of Partial Differential Equations for Stress-Deformation in Unsaturated Soils 713
13.8 Measurement of Stress-Deformation Properties for Unsaturated Soils 721
CHAPTER 14 Solving Stress-Deformation Problems with Unsaturated Soils 731
14.1 Introduction 731
14.2 Estimation of Stress-Deformation Properties 731
14.3 Application to Practical Stress-Deformation Problems 735
14.4 Evaluation of Stress History in Unsaturated Soils 738
14.5 One-Dimensional Formulations for Deformation Analysis for Unsaturated Soil 756
14.6 Swelling Theory Formulated in Terms of Incremental Elasticity Parameters 768
14.7 Evaluation of Elasticity Parameter Functions from Volume Change Indices 771
14.8 One-Dimensional Solution Using Incremental Elasticity Formulation 775
14.9 Two-Dimensional Solution Using Incremental Elasticity Formulation 778
14.10 Challenges in Numerically Modeling of Expansive Soil Problems 778
CHAPTER 15 Compressibility and Pore Pressure Parameters 783
15.1 Introduction 783
15.2 Coupled and Uncoupled Solutions 784
15.3 Uncoupled Undrained Loading 786
15.4 Derivation of Pore Pressure Parameters 794
15.5 Drained and Undrained Loading 796
15.6 Solutions of Pore Pressure Equations and Comparisons with Experimental Results 802
15.7 Rheological Model to Represent Relative Compressibilities of Unsaturated Soil 807
CHAPTER 16 Consolidation and Swelling Processes in Unsaturated Soils 809
16.1 Introduction 809
16.2 Stress and Seepage Uncoupled and Coupled Systems 809
16.3 Solution of Consolidation Equations Using Finite Difference Technique 817
16.4 Typical Consolidation Test Results on Unsaturated Soils 819
16.5 Dimensionless Consolidation Parameters 823
16.6 Coupled Formulations and Three-Dimensional Consolidation 825
16.7 Water, Air Flow, and Nonisothermal Systems 829
16.8 Two-Dimensional Stress-Deformation and Saturated-Unsaturated Seepage Analysis 831
16.9 Computer Simulation of Edge Lift and Edge Drop of Slabs-on-Ground 845
16.10 Theory for Simulation of Swelling Pressure Development 848
16.11 Rheological Model for Unsaturated Soils 851
APPENDIX Units and Symbols 858
References 864
Index 911

回复
feagle023
2016年08月01日 14:38:20
4楼
感谢楼主无私奉献!
回复
cow1467784362681
2016年08月01日 21:54:39
5楼
好资料新资料必须顶起来 !
回复

相关推荐

APP内打开