地基处理,地面堆载30吨每平方.......
wangjun131420
2008年05月27日 17:40:14
只看楼主

一个轻钢厂房,带吊车,做的是桩基地面堆载30吨每平方,主要地层承载力为6.5吨每平方(淤泥很厚,离地面也就3m左右)地坪沉降会挤压桩影响结构的安全性该地基如何处理可控制地坪的沉降,考虑过做复合地基可复合地基的承载力也就15吨每平方左右望各位大侠不吝赐教,小弟感激不尽急!急!急!急!急!急!急!急!急!急!急!急!急!急!急!

一个轻钢厂房,带吊车,做的是桩基
地面堆载30吨每平方,主要地层承载力为6.5吨每平方(淤泥很厚,离地面也就3m左右)
地坪沉降会挤压桩影响结构的安全性
该地基如何处理可控制地坪的沉降,考虑过做复合地基
可复合地基的承载力也就15吨每平方左右
望各位大侠不吝赐教,小弟感激不尽
急!急!急!急!急!急!急!急!急!急!急!急!急!急!急!
免费打赏
yha2
2008年05月27日 21:20:52
2楼
做复合地基
回复
monkeyone
2008年05月29日 13:40:22
3楼
做CFG桩如何?
30T/m2,确实堆载大了点
回复
monkeyone
2008年05月29日 14:36:22
4楼
CFG桩复合地基承载力及施工检测

一、引言
CFG桩复合地基技术已在全国广泛推广应用,国家行业标准《建筑地基处理技术规范》(JGJ79-2002)的颁布,为工程技术人员进行 CFG桩复合地基设计、施工及检测提供了技术依据。但在复合地基承载力的确定及复合地基检测方面,在不同地区基于某些地区性经验,存在一些差异。本文将根据自己一些粗浅体会就上述问题做一些讨论。
二、复合地基承载力的确定
根据《建筑地基基础设计规范》(GBJ79-2002)(简称地基规范)和《建筑地基处理技术规范》(JGJ79-2002)(简称地基处理规范),复合地基承载力确定可分为设计阶段和竣工验收阶段进行讨论。
1、设计阶段
在复合地基设计阶段,地基规范规定:复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定;地基处理规范规定:复合地基承载力特征值,应通过现场复合地基载荷试验确定。初步设计时,也可按下式估算:
fspk=mRa/Ap+β(1-m)fsk (1)
式中:fspk— 复合地基承载力特征值(kpa);
m — 面积置换率;
Ra — 单桩竖向承载力特征值(kN);
Ap — 桩的截面积(m2);
β — 桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值;
fsk — 桩间土承载力特征值(kPa),宜按当地经验取值,如无经验时,可取天然地基承载力特征值。
实际工程中,有条件时先在拟建场地做现场载荷试验,可为设计提供可靠的设计参数。而很多情况是在无试验资料条件下按(1)式估算复合地基承载力,但要结合工程实践经验,合理确定Ra、fsk、β等参数的取值。希望公式计算值接近但不大于载荷试验结果,而大量试验结果表明,公式计算结果一般不大于载荷试验结果。
2、竣工验收阶段
由以上讨论可知,在复合地基设计阶段,确定复合地基设计参数时,用公式(1)估算复合地基承载力是符合规范要求的。在竣工验收阶段,能否只做单桩静载试验.用单桩承载力Ra和地质报告提供的天然地基承载力fak(或桩间土静载试验结果fsk)按公式(1)计算确定复合地基承载力特征值,是需要说明的一个重要问题。
首先,加固后桩间土承载力特征值fsk与然地基承载力特征值fak是不同的, 通常fsk=fak。为桩间土承载力提高系数,对挤密效果好的土采用振动挤土成桩工艺,由于土密度的增加和桩对土的侧向约束作用,fsk远大于fak,用单桩承载力Ra和天然地基承载力fak确定复合地基承载力与实测值相比会有较大误差。即使用单桩静载试验的Ra和桩间土静载试验结果fsk按公式(1)计算复合地基承载力,β的取值可能会因人而异,对于同一复合地基,得出不同的计算结果,这样就不能保证复合地基承载力的准确性和唯一性。因此,地基处理规范用强制性条文规定复合地基竣工验收时,承载力检验应采用复合地基载荷试验确定。
三、CFG桩复合地基载荷试验应注意的问题
CFG桩复合地基载荷试验要点详见地基处理规范,此外试验时还应注意如下几个问题:1、褥垫铺设及荷载板安装
首先根据设计要求挖一试坑,坑的平面尺寸与荷载板相同,深度和褥垫厚度相同,如图1所示。按设计要求的夯填度铺设褥垫层,厚度为150mm。保证原状土对褥垫层的侧向约束。之后安装荷载板并使荷载板与褥垫层密切接触。
回复
monkeyone
2008年05月29日 14:37:07
5楼
2、褥垫厚度
根据地基处理规范,静载试验褥垫厚度应取150mm。研究表明,褥垫厚度与桩、土荷载分担密切相关,褥垫越厚,土承担的荷载越多,桩承担的荷载越少,反之亦然。当褥垫太薄,会导致桩顶应力集中,桩间土承载能力不能充分发挥,应该由桩间土承担的荷载转移至桩上,容易发生桩头压碎或桩过早首先达到单桩极限承载力,复合地基承载力偏低。
曾经见过这样的报道,某工程为使复合地基竣工验收承载力得以通过,静载试验时人为选用很小的褥垫厚度,目的是减少给定压力下复合地基P—S曲线的变形。这样做首先是不规范,同时也不一定获得较高的承载力。如图2所示。
回复
monkeyone
2008年05月29日 14:37:59
6楼
曲线a为褥垫厚度150mm时试验结果,曲线b为褥垫厚度20mm试验结果。对正常设计的复合地基(桩体强度等级和单桩承载力不是过分保守),S/B=0.01对应的荷载在曲线a和曲线b分别为Pa和Pb, 显然Pb大于Pa。但由于曲线b褥垫太薄,桩间土承载能力不能充分发挥,和曲线a相比,由于桩过早达到单桩极限承载力,则有曲线b对应的承载力由极限荷载的一半Pc(Pc= )来控制,PcPa。
3.由载荷试验曲线确定复合地基承载力
地基处理规范规定:
(1)当P—S曲线极限荷载能确定,其值不小于对应比例极限的2倍,可取比例极限作为承载力特征值;其值小于对应比例极限的2倍时,可取极限荷载的一半为承载力特征值。
(2)当P—S曲线是平缓的光滑曲线时,可按相对变形值确定承载力特征值,且该值不应大于最大加载压力的一半。对于CFG桩复合地基,当以卵石、圆砾、密实粗中砂为主的地基,可取s/b(或s/d)等于0.008所对应的压力;当以粘性土、粉土为主的地基,可取s/b(或s/d)等于0.01所对应的压力为复合地基承载力特征值。按相对变形确定复合地基承载力特征值不大于最大加载压力的一半。实际工程中由平缓光滑的P—S曲线确定复合地基承载力容易发生如下错误:
①只注意s/b(或s/d)等于0.01所对应的压力,而忽视了不应大于最大加载压力的一半的限制。如图3所示, P1为s/b= 0.01所对应的压力,P2为最大加载压力,P3为最大加载压力的一半。对图3(a),取P1为复合地基承载力特征值是不妥的,应取P3。
②只注意最大加载压力的一半,而忽视了s/b(或s/d)等于0.01所对应压力的限制。如图3(b)所示, 取P3为复合地基承载力特征值是不妥的,应取P1。
回复
monkeyone
2008年05月29日 14:38:37
7楼
4.试验前后对桩做低应变检测
由于设计或施工的某种失误,有时CFG桩复合地基承载力可能达不到设计要求,为弄清承载力偏低的原因,做复合地基静载试验前后,对桩做低应变检测了解桩身有无缺陷是至关重要的。
当试验前和试验后低应变检测判定桩身完整,而承载力偏低时,首先复核设计是否有误。当排除设计原因后,对长螺旋钻成孔管内泵送混凝土成桩工艺(采用常规侧开门钻头),且桩端土为饱和砂土、粉土或卵石,是桩端虚土过多桩无端阻所致的可能性最大。为了防止上述问题发生,需选用本文作者发明的专利钻头(专利号ZL 00 2 63200.4)。
试验前做低应变检测判定桩身完整,试验后做低应变检测发现桩头或桩身破坏,说明桩体强度不够导致承载力偏低。
当低应变检测判定桩身有缺陷(缩颈、断桩、离淅等),静载试验结果还能满足设计要求,说明这类桩身缺陷不影响复合地基竖向承载能力的使用;若静载试验结果不能满足设计要求,再结合不低于总桩数10%低应变检测结果,可为工程技术人员提供如何使用这类缺陷桩和采取怎样的补强措施提供依据。
需要说明的是,如果静载试验前没做低应变检测,当发现承载力有问题,需要了解试验桩是否有缺陷时,由于静载试验在荷载作用下可能使桩的初始状态已经发生了改变,桩是否存在固有缺陷已无法判断,对分析事故原因带来很大困难。
此外,当静载试验时发现承载力有问题,试验结束后应立即进行桩身检验,探查桩头是否被压坏或低应变检测判定桩身某个部位被压坏。
5.防止桩间土被扰动和含水量发生大的变化
某工程复合地基承载力检测值比予估值大很多,经做桩间土静载试验发现承载力特征值为400kpa (地质报告提供的承载力特征值为200kpa),其原因是复合地基凉槽达60余天,桩间土含水量大幅度降低。另一工程则是在雨季施工,清土后未抓紧检测,雨后泡槽致使桩间土承载力从140 kpa降低到60~80kpa。显然上述两种情况均无法得到可靠的复合地基承载力值。
6.静载试验加载量的控制
地基处理规范规定,复合地基静载试验最大加载压力不应小于设计要求压力值的2倍。同时也规定,试验点数量不应少于3点,当满足其极差不超过平均值的30%时,可取平均值为复合地基承载力特征值。但许多检测人员多按等于设计要求压力值的2倍设计最大加载量,比如,设计要求复合地基承载力特征值为300kpa , 则设计最大加载量定为600kpa 。假如该工程为3台静载试验,其中1台试验极限荷载为590kpa ,其余为600kpa,且P—S曲线是平缓的光滑曲线,承载力由最大加载量的一半控制,复合地基承载力特征值为298kpa ,不满足设计要求;若最大加载量定为610kpa ,尽管其中1台试验极限荷载为590kpa ,其余两台为610kpa ,极差不超过平均值的30%,复合地基承载力特征值为301kpa ,满足设计要求。因此,试验方案设计,最大加载量不一定刚好等于复合地基承载力特征值的2倍,应根据桩身强度等级大小,适当加大。
7.试验点选择
复合地基静载试验的试验点在平面上应均匀分布,当土性分布不均匀时,试验点选择应考虑土性对复合地基承载力的影响。
低应变检测试验点选择除了注意在平面上应均匀分布外,还要注意随机选点,以保证缺陷桩统计比例的真实性。比如,某工程因机械清土不当,造成桩浅部水平断裂,随机选取143根桩进行低应变检测,发现25根桩有水平断裂缺陷,缺陷桩为检测桩的17%,又增加143根桩进行低应变检测,缺陷桩为检测桩的16.8%,目前,北京地区多用抽取桩号尾号数字来确定,比如,抽取总桩数的10%进行低应变检测,选尾号数字3,则3、13、23、33、43……即为所选被检测桩。

四、结语
1.设计阶段,CFG桩复合地基承载力应通过现场复合地基载荷试验确定,初步设计时可按公式(1)估算复合地基承载力特征值。复合地基竣工验收时,承载力检验应采用复合地基载荷试验确定。
2.复合地基静载试验前,首先做桩的低应变检测,静载试验后再做低应变检测和桩顶部开挖探查,对分析判断复合地基施工发生的问题具有重要意义。
3.褥垫厚度及荷载板安装,褥垫材料是否具有侧限、密实度大小及荷载板与褥垫层是否密切接触,对试验结果都有影响。
4.对于p-s曲线为平缓光滑的缓变型曲线,注意按不大于最大加载压力的一半和相对变形值两个控制条件,来确定复合地基承载力特征值。
5.复合地基静载试验最大加载量,不一定刚好等于复合地基承载力特征值的2倍,可根据桩身强度等级大小,适当加大。

回复
monkeyone
2008年05月29日 14:39:46
8楼
CFG桩施工技术
本文介绍了CFG桩施工技术要点,对采用长螺旋钻孔、管内泵压混合料灌注成桩工艺施工,如何防止桩端产生虚土和防止窜孔进行了讨论。

一、前言
CFG桩复合地基技术已在全国广泛推广应用,但CFG桩施工在某些地区存在着一些不可忽视的问题,比如,长螺旋钻孔、管内泵压混合料灌注成桩,施工设备不具备排气装置,钻孔到预定标高后开始向管内泵料,钻杆中的空气排不出,导致桩体产生孔洞;又如,钻孔到预定标高后,怕钻头活门打不开,先提30~50cm再灌料,导致桩端有虚土承载力偏低等等。需要指出的是,一些施工人员由于缺乏对这一技术的深入了解,甚至把先提30~50cm再灌料的错误施工方法作为经验来交流,以至于这种错误的施工方法在全国广泛流传。
为了更好地推广CFG桩复合地基技术,避免施工发生一些质量问题,根据多年对CFG桩施工工艺、施工设备的试验研究,特别是通过处理工程发生的一些事故,对CFG桩施工技术做了回顾和总结,归纳了CFG桩施工技术要点,供施工人员参考,并就其中的几个问题作一讨论。

二、CFG桩施工技术要点
(一)CFG桩施工可根据现场条件选用下列施工工艺:
1、长螺旋钻干成孔灌注成桩;
适用于地下水以上、提钻不塌孔的土层条件;
2、长螺旋钻孔、管内泵压混合料灌注成桩;
适用于粘性土、粉土、砂土、粒径不大于60mm厚度不大于5m的卵石层(卵石含量不大于30%),以及对噪声和泥浆污染要求高的场地;
3、振动沉管灌注成桩;
适用于粘性土、粉土、素填土,对夹有较厚卵石、砂和孔隙比小液性指数较低的粘土层无合理有效的辅助措施不宜采用,软土地基应通过现场试验确定其适用性;
4、泥浆护壁钻孔灌注成桩;
对遇有较厚卵石、砂和孔隙比小液性指数较低的粘土层以及饱和软土,桩端持力层具有水头很高的承压水,长螺旋钻孔、管内泵压混合料灌注成桩容易发生窜孔,对噪声污染要求严格的场地,不宜采用前述施工工艺时,可采用该工艺。
(二)当采用挤土成桩工艺,新打桩对已打桩可能产生不良影响时,可选用非挤土成桩工艺,或挤土和非挤土成桩工艺联合使用的施工方案,挤土和非挤土成桩工艺联合施工时,宜先打挤土桩、后打非挤土桩;在有较厚软土的地基上施工时,混合料宜用低塌落度(3~5cm),以防止桩体自身塌落发生断桩;
(三)通过试成桩检验地质条件是否与地质报告相符、复合地基设计参数是否合理,对发现的问题,及时向地基处理设计单位提出报告。
(四)振动沉管CFG桩施工要点
1、通过在桩机卷扬系统加动滑轮,调整拔管线速度控制在规范建议的范围(不是平均速度);
2、打桩前、打桩过程中测地表标高,观测地表隆起或下沉量;
3、通过试成桩,观测地面标高变化和测定新打桩对已打桩的影响(新打桩对未结硬的已打桩的影响;新打桩对已结硬的已打桩的影响),确定合理的施打顺序;
4、软土中可采用静压振拔技术,沉管过程可不启振动锤、静压沉管,减少对桩间土的扰动,拔管启锤使混合料振密;
5、软土中可采用大直径予制桩尖,以获得较大的端阻力,而保持桩身混合料用量不变;
6、经施工监测确认桩体断裂并脱开,应逐桩静压(跑桩)将脱开的上下桩接起来;
7、拔管不宜长时间留振,防止粗骨料与水泥浆发生分离。
(五)长螺旋钻孔、管内泵压混合料灌注成桩施工要点:
1、基础埋深较大时,宜在基坑开挖后的工作面上施工,工作面宜高出有效桩顶标高300~500mm,工作面为卵石和粗砂取小值,工作面土较软时应采取相应施工措施(铺碎石、垫钢板等),保证桩机正常施工。基坑较浅在地表打桩或部分开挖打桩空孔较长时,应加大保护桩长,并严格控制桩位偏差和垂直度;
2、基坑降水应控制在标高最低的电梯井、集水坑底标高以下500~1000mm;
3、软土地基中施工宜通过掺加减水剂、泵送剂制备泵送性能好塌落度较低的混合料,以防止桩体自身塌落发生断桩、或充盈系数过大。
4、桩体配比碎石最大粒径不宜大于25mm,粉煤灰选用Ⅱ级或Ⅲ级细灰,每立方米混合料掺量70~90kg为宜;
5、桩端为饱和粉土、砂土和卵石层时,应选用下开式专利钻头(专利号ZL 00 2 63200.4),以防止钻头活门打不开、桩端有虚土不能发挥土的端阻;
6、严禁先提钻后灌料;
7、桩径400mm时提钻速度宜为2.5~3.5m/min,桩径增大钻头活门断面应相应增大,若桩径增大而钻头活门断面不变时应相应降低提钻速度;
8、夹有松散饱和粉土、粉细砂的土层,成孔时在剪切荷载作用下,土体液化,导致刚打完处于流动状态桩的桩周土丧失对桩的侧向约束能力,桩体侧向澎出、桩顶下沉,产生窜孔,液化区域连成片甚至导致基坑失稳或周边建筑物倾斜开裂、道路破坏(例如,郑州地区、山东东营、菏泽地区),在这类地基上施工应采取如下措施:
(1)降饱和粉土、粉细砂中的水;
(2)采用小叶片螺旋钻杆成孔,减少剪切能积累并对桩间土具有挤密作用;
(3)合理设计施打顺序和控制日成桩数量,避免在某个区域产生成片的液化区,也可采用跳打等方法减少剪切能量的积累;
(4)快速钻进,减少剪切能量在可液化土层上的积累;
(5)选用下开式专利钻头,防止阀门打不开在同一桩位多次复钻;
(6)混合料尽量采用较小的塌落度;
(7)把施工因素作为基坑支护的设计条件;
(8)设计宜采用大桩距大桩长。
注:当上述措施仍无效时,可采用泥浆护壁钻孔灌注成桩工艺。
(六)清土、剔桩头防断桩和防扰动桩间土措施
1、打桩弃土和预留保护土层可采用人工清除、或机械人工联合清除方案。当采用机械人工联合清除方案时:
(1)对基坑开挖后打桩的场地,采用人工予断桩、挖掘机清土,具体方法如下:
(a)成桩后混合料结硬前人工将有效桩顶标高200mm以上的桩体挖除,用水准仪严格控制挖除后的桩顶标高;
(b)全部桩施工完后,挖掘机自垫路(路面至挖除后桩顶的距离不小于1.5m,基底下土和弃土较软时取高值)进入现场清除现桩顶标高以上的土:
(c)人工清除余土至有效桩顶标高。
(2)在地表打桩后再进行基坑开挖的场地,由现场试挖确定预留人工开挖深度,以保证桩的断裂部位高于有效桩顶标高以上。
2、截桩头宜用无尺锯在有效桩顶标高处切深1~2cm的园环,再用两钢钎相对同时敲击断桩。
3、清土、截桩头后禁止对桩间土产生扰动的施工设备(如轮胎式运土车等)在施工场地内通行,防止产生“橡皮土”。
(七)混合料试块的制作和现场养护
施工过程,应随机选取具有代表性的混合料制作试块(边长为150mm的立方体)并捣实,送实验室前应在现场按标准养护条件对试样进行养护,特别在冬期,不得将试样随意放置在施工现场或工棚里,避免养护条件不标准导致试验结果不能反映桩体的真实强度。
回复
monkeyone
2008年05月29日 14:40:20
9楼
三、几个问题的讨论
(一)如何避免桩端产生虚土
长螺旋钻孔、管内泵压混合料灌注成桩工艺的最大优点是桩端无虚土,这对提高桩的承载力和减少地基变形都是有利的。但施工操作不当,也会导致桩端产生虚土、桩无端阻。
桩端产生虚土的情况主要有两种,一是怕钻头活门打不开,先提30~50cm再灌料,使得叶片上的土可能落到孔底,严重影响桩端土端阻的发挥。
二是桩端为饱和粉土、砂土和卵石层时,水头较高或为承压水,采用侧开的常规钻头,阀门外的水压力大于钻杆管内混合料对阀门产生的侧压力,如图1所示,作用在阀门外的水压力为(水的侧压力系数为1):
F1=γhA1
式中,γ-水的容重;h-阀门外的水头高度,A1-阀门水平向投影面积
管内混合料对阀门的水平力为:
F2=K0γcHA2
式中,γc-管内混合料容重,H-管内混合料顶面至阀门中心的高度,K0-混合料的侧压力系数(K0<1)。尽管H>h、γc>γ,但A1> A2、K0<1,当水头h有一定高度时,F2< F1,侧开式阀门打不开。随着钻杆提升,管外的水头高度h越来越小,F1逐渐减小,当F2> F1,阀门打开,但此时大量虚土落在孔底,导致桩无端阻。
为克服侧开式常规钻头的缺点,闫雪峰、赵风稳发明了下开式专利钻头(专利号ZL 00 2 63200.4),这种钻头的特点是阀门下开,如图2所示,阀门上部受力为混合料的竖向压力 F2=γcHA2,下部受的水压力F1=γhA1,由于F2=γcHA2式中不再出现小于1的侧压力系数K0,通常为F2> F1,即不再发生阀门打不开的情况,避免了桩端产生虚土。
(二)如何防止饱和粉土、粉细砂的剪切液化
在有松散饱和粉土、粉细砂的场地,采用长螺旋钻管内泵压混合料成桩工艺,成孔时螺旋叶片对周边土产生扰动和剪切作用,当剪切作用累计到一定程度后,土体发生液化,导致刚打完处于流动状态桩的桩周土丧失对桩的侧向约束能力,桩体侧向澎出、桩顶下沉,产生窜孔,液化区域连成片甚至导致基坑失稳或周边建筑物倾斜开裂、道路破坏。
某工程,被加固地基为饱和粉土,采用CFG桩复合地基处理方案,基坑开挖后用长螺旋钻管内泵压混合料成桩工艺施工,钻头为侧开式常规钻头,施工过程中经常发生钻头阀门打不开的情况,其中东北角靠近降水井的一根桩,因阀门打不开7次复钻,邻近的降水井抽出的水为含有大量粉土颗粒的混浊水,复钻成孔时钻杆在自重压力下非常容易地下到预定标高。这说明土体已经液化,土的抗剪强度趋近于0。由于在较多桩位发生上述问题,使液化土体连成片,最后导致基坑产生较大水平位移,地面出现裂缝。
在同一地区类似土层的场地,起初也是采用侧开式常规钻头,由于经常发生阀门打不开,48小时打了3根桩,后改用下开式专利钻头,不再出现阀门打不开的情况,施工顺利完成,没有出现因施工扰动导致基坑失稳的情况发生。
以上情况说明,选用下开式专利钻头,防止在同一桩位多次复钻,对提高施工效率和防止饱和粉土的剪切液化是有效的技术措施之一。
北京凤凰城B座⑴,基础埋深7.6m,基底以下8~12m为饱和的砂质粉土④1,采用CFG桩复合地基处理方案,桩长20.5m、桩径415mm,施工采用长螺旋钻管内泵压混合料成桩工艺,试成桩按4排桩连续施打,当时选用的钻头存在缺陷,成孔进尺很慢,钻孔达设计标高需30~40min,由于钻进速度太慢,螺旋叶片对饱和粉土较长时间的剪切作用,饱和的砂质粉土④1发生剪切液化,先打的处于流动状态的相邻桩桩顶下沉,即产生窜孔。
之后,更换钻头、并采用2排连续施打方案,控制在11min以内钻孔达设计标高,不再发生窜孔。这说明改4排连打为2排连打,和控制钻进速度(提钻一般为静拔,对桩间土不产生剪切作用),可以有效减少剪切能量在已打桩周围土体的积累,对防止饱和粉土、粉细砂的剪切液化是有效的。
此外,诸如降饱和粉土、粉细砂中的水、采用小叶片螺旋钻杆成孔、控制日成桩数量、混合料采用较小的塌落度和采用大桩距大桩长的设计参数都是可行的技术措施。
当上述措施仍无效时,可采用泥浆护壁钻孔灌注成桩工艺。
(四)结语
长螺旋钻孔、管内泵压混合料灌注成桩,先提30~50cm再灌料是一种错误的施工方法,应严格禁止。下开式专利钻头可避免发生阀门打不开的情况发生。为防止施工发生质量问题,工程技术人员和监理工程师共同努力,尽快将CFG桩施工技术规范化。
回复
wangjun131420
2008年06月06日 15:02:51
10楼
谢谢楼上的兄弟.
咨询了好几个老工程师,说预压是最好的处理办法
但就是会影响工期,其他也没什么好办法
最后做的石灰桩(淤泥较厚),在使用的时候提出了几点限制
送去审图公司了......
回复
lul0668
2008年09月11日 14:43:58
11楼
做地坪桩最安全。桩+现浇地坪。
回复

相关推荐

APP内打开