变压器接地
sailimu613
sailimu613 Lv.2
2007年06月04日 11:30:25
来自于变压器
只看楼主

请教,谁知道士外向式变压器基地的要求和做法

请教,谁知道士外向式变压器基地的要求和做法
免费打赏
lishouhua-hrb
2008年01月29日 23:45:56
12楼
3楼还是破译密码的高手啊,佩服
回复
ynmldaixinyu
2008年02月01日 11:24:09
13楼
对于自己所问的问题都说不清楚--对自己和大家都不负责任的人,我觉得没有必要解答了。
回复
zhangpei123-4
2008年10月13日 07:56:50
14楼
摘要:通过对部颁标准中有关规定的理解,阐述了配电变压器接地的具体要求,提出
现场规程中对配电变压器接地规定的不明确性,对现场工作有一定指导意义。
关键词:配电变压器台区;柱上开关;接地装置;系统接地方式
中图分类号:TM503.+4 文献标志码:B 文章编号:1003-0867(2007)02-0018-03
目前供电公司对配电变压器台区的防雷接地采取高压侧接避雷器,然后将避雷器的接
地引下线与配电变压器外壳及低压中性点相连,共用一个接地装置的做法,要求100 kVA
及以上的配电变压器接地装置的接地电阻为4Ω 以下,100 kVA 及以下的配电变压器接地电
阻为10Ω 以下,并要求人工接地装置做成环形,这些规定,都是有关标准上的结论。而标
准中的每条规定都是有具体的适用范围,而许多具体规定在供电公司的现场规程中没有反
映,因而有必要对这些规定做出一些解释,同时做一些更易于执行的具体规定。
1 配电变压器防雷接线
配电变压器防雷接线见图1。
图1 配电变压器防雷、工作、保护共同接地
1.1 关于接地电阻的规定
三点共同接地就意味着防雷接地(高压避雷器)、保护接地(外壳)和工作接地(低
压中性点)共用一个接地装置,其接地电阻应满足三者之中的最小值,其中防雷接地一般规
定小于10Ω,但要有垂直接地极,以利散流。低压工作接地一般应小于4Ω。因而接地电阻
主要取决于高压侧对地击穿时的保护接地,一般情况下配电变压器都是向B 类建筑物供电
的,标准上有规定,只有当保护接地的接地电阻R≤50/I 时,高压侧防雷及保护接地才能与
回复
zhangpei123-4
2008年10月13日 07:57:20
15楼
低压侧工作接地共用一个接地装置。反过来说,如果采取三点共同接地,则R≤50/I 时,其
中I 为高压系统的单相接地电流。
对不接地系统,I 为系统的电容电流,对消弧线圈接地系统,I 为故障点的残流。
有些系统虽装有消弧线圈,但常常运行不正常而退出运行,目前不少10 kV 系统IC 都
在40 A 左右,所以较大的高压系统中R 应取1Ω。
如果按上述计算结果大于4Ω,则由低压工作接地要求,不得大于4Ω。公式R≤50/I 中,
50 为低系统的安全电压,即高压侧对外壳单相接地时,接地电流流过接地装置的压降不得
超过50 V。
而10 kV 系统中的电容电流差别很大,有的不足10 A,有的高达上百安或数百安,所
以配电变压器三点共同接地时,要根据所在高压系统的情况来确定接地装置的接地电阻,不
能笼统地规定4Ω 或10Ω。由于接地电阻大小与系统单相接地电流有关,与配变容量并无关,
所以现场规程的说法没有道理。有的资料认为,当低压工作接地单独另设时,100 kVA 以下
的配电变压器的低压侧工作接地电阻,可放宽到10Ω,原因是变压器小,内阻抗大,限制了
接地电流,也就限制了地电位的升高。
1.2 关于共同接地的接地方式
除图1 的方式外,施工中还会出现其它接地方式,见图2、3。
图2 施工中常用的接地方式
回复
zhangpei123-4
2008年10月13日 07:57:58
16楼
图3 施工中常用接地方式
三种方式中都是共同接地的,采用哪种方式为好,现分析如下。
高压侧避雷器的作用是用来保护变压器高压线圈与外壳之间的绝缘,按图2 的接法,
高压线圈与外壳之间承受的电压除避雷器残压外,还增加了接地引下线的电感、电阻上的压
降,这个压降在雷电流冲击下是不可忽视的,使其保护效果大为降低。
而图1 的接法也会产生一个问题,就是低压线圈及中性线全部承受接地装置上的压降,
特别是当中性点存在重复接地,接地电阻小于配电变压器接地电阻,且离配电变压器较近时,
高压侧避雷器的放电冲击电流将较多流向重复接地,有时会将重复接地的引下线烧断(重复
接地线一般较细)。
所以图3 的接法较为合理,对高压线圈的防雷保护合理,对低压中性线的冲击也较小,
因为部分雷电流已通过接地装置流入地中。
1.3 关于接地装置的设计
按标准规定,配电变压器台区的接地装置应敷设为闭合环形,并加垂直接地极,这是
因为环形内的接触电压比较低,而沿环形接地体走路的行人,其跨步电压也较小,城区的配
电变压器大多安装在路边,因常有人走动,为行人安全着想,必须敷设为环形。
环形的大小,一般以5m 为直径,这是因为要发挥水平接地极和垂直接地极的散流效
果,减少相互屏蔽,降低接地电阻而必需的。但有些安装地点过于狭窄时,则可为椭圆形,
短轴距不得低于3 m,见图4,两个垂直接地极宜打在短轴两端点附近,高压避雷器及外壳
接地和中性点的接地分别引至垂直接地极附近,以利于散流。如土壤电阻率较高,做一个环
后,测试接地电阻不合要求,则应在环外再做一个大环,两环相距4~5 m,埋深比第一环
深,至少两处相连接,直至满足要求为止。
回复
zhangpei123-4
2008年10月13日 07:58:20
17楼
1.4 关于接地引下线的连接方式
按部颁标准,除设备的接线端子可用螺栓连接外,引下线及接地装置都应使用焊接,
但为安装方便,通常在电杆下的1.8~2.0 m 处有一个断接卡,也用螺栓连接。引下线一般用
扁钢,但也有采用钢绞线。钢绞线与扁钢的连接应制作接线板,最好采用双螺栓相连,以利
于接触良好。
目前的实际情况是,高压避雷器接地端分别用钢绞线接线,三根钢绞线再连在一起,
且都是绞合连接,配电变压器外壳的接地线也用钢绞线与避雷器接地线绞合,然后再与接地
装置的引上线用螺栓连接,有的也未压制接线鼻,这些连接都不符合标准的要求,接头过多,
接触不良。
建议三个高压避雷器的接地端用30×4 的扁钢连成一体,从中间引下与外壳的接地扁钢
相连,均采用焊接,也不宜在中间设断连卡,而直接入地与接地装置进行焊接,低压中性点
直接用扁钢引至接地装置与之焊接,扁钢宜采用30×40 mm2。
1.5 关于接地装置的施工
接地装置的地下水平接地极应采用40×4 的扁钢,垂直接地极用L40×4,埋深大于60cm,
填土时用干净的原土并夯实。有条件时,应将环形水平接地极的面积适当增大些,或往环外
再做一个环,两处相连,以降低接地电阻,尽可能达到1Ω。地下连接处应采用焊接,并符
合要求。扁钢的搭接长度应为扁钢宽度的2 倍,且应三面或四面焊接,三面焊接时尽量二短
边一长边,利于电流通过,圆钢的焊接长度为圆钢直径的6 倍,应两面焊接,且不得有虚焊。
焊接处应采取防腐措施。
1.6 关于低压侧装避雷器
由于采用三点共地后,高压侧避雷器的放电电流(特别当三相同时放电时)很大,在
接地电阻上的压降也很高。该压降加在低压线圈上,通过低压线路电容接地,在低压线圈中
就有一冲击电流使线圈励磁,通过电磁感应使高压线圈感应出很高的电压。高压侧电压受高
回复
zhangpei123-4
2008年10月13日 07:58:35
18楼
压侧避雷器残压所限制,高压线圈中性点电位就很高,容易在中性点附近,导致对地击穿或
匝间短路而损坏变压器,因而必须采取措施,限制低压线圈承受的电压,即一般采取低压侧
也加一组避雷器。当地电位升高时,通过避雷器放电,使低压线圈只承受低压避雷器的残压
(1300 V 左右),这样高压中性点附近的过电压就被限制在可承受范围之内,这就是防止
逆变换损坏变压器,见图5。同样当低压线路感应雷传到配电变压器时,低压侧避雷器也会
动作,使雷电流入地,低压线圈的电压被限制在低压避雷器残压之内,防止配电变压器高压
侧被按变比感应的电压所损坏。这属于正变换过电压,由于配电变压器的低压侧绝缘裕度高
于高压侧,所以配电变压器雷击事故常发生在高压侧,尤其是中性点附近,见图6。
图5 配电变压器逆变换情况
图6 配电变压器正变换情况
回复
zhangpei123-4
2008年10月13日 07:59:10
19楼
低压侧加装避雷器,因其往往采用高、低压架空线,容易受雷击,35/0.4 kV 直配变压
器因其变比大,更应在低压侧加装一组避雷器,尤其是当35 kV 线路开路运行,高压侧无避
雷器保护时。加装低压避雷器后,原来的三点共同接地就成了四点共同接地,见图1。
1.7 关于中性线及连接
中性线在三相负荷不平衡时流过电流,按有关规定该电流不得大于相线电流的25%。
另外,中性线、中性点接地线与配电变压器低压中性线端头的连接应可靠,应制作接
线鼻(板),螺栓应压紧,防止接触不良流过电流时发热烧断。中性线断线意味着低压系统
失去接地,成为不接地系统。三相负荷不平衡时,导致三相电压相差很大,烧毁用电设备。
2 关于柱上开关的防雷接地
高压柱上开关及隔离开关一般作为联络开关用,标准规定应在一侧或两侧装设避雷器
(开关经常断开),且避雷器引下接地线应与开关外壳(包括隔离开关底座)连接,这是为
了保证开关对地绝缘只承受避雷器残压,而得到有效的保护。
但观察中发现,不少柱上开关两侧的高压避雷器接地线都是直接引入地下,未与开关
外壳相连。此时开关对地绝缘所承受的除避雷器残压外,还包括引线和接地装置电阻上的压
降。如接地引线电感为1.67μH/m,引线长10 m,雷电波波头2.5 μs,幅值5 kA,加上接地
电阻上的 压降,避雷器的残压取50 kV,则开关承受的电压为133.4 kV,已超过了开关的
冲击绝缘水平75 kV,避雷器就起不到保护作用。
有些开关外壳虽有引下接地线,也是单独入地,即使共用一个接地装置,开关绝缘所
承受的电压也高于残压。
单独柱上开关的接地装置,其接地电阻不应大于10Ω,这也是标准的规定,柱上开关
的外壳,隔离开关闸刀的底座,以及旁边的绝缘子横担(金属),应连在一起与避雷器的接
地引下线相连,这样就使隔离开关支持绝缘子都能得到保护,防止雷击闪络,充分发挥避雷
器的作用。其连接线可采用Φ8 mm 的圆钢或20 mm×3 mm 的扁钢。
线路中所装设的高压无功补偿电容器也应加金属装氧化物避雷器,其接地引下线也应
与电容器的外壳相连。
3 配电变压器低压侧的接地型式
前述配电变压器低压侧中性点接地,并与高压侧避雷器接地共用一个接地装置,适应
于大量采用的低压系统为TN 和TT,但是如采用IT 制式,则中性点就不能接地。
TN 系统,又分三种情况:
•TN-C 系统,整个系统中用电气设备外壳保护线与中性线合一;
•TN-S 系统,整个系统中电气设备外壳保护接地线与中性线分开,有专用保护线;
回复
zhangpei123-4
2008年10月13日 07:59:25
20楼
•TN-C-S 系统,系统中有部分线路的中性线和保护线合一。
TT 系统,系统中有一点直接接地,用电设备外壳采取接地保护。
IT 系统,配电变压器低压中性点不接地,用电气设备外壳单独接地保护。
(1)TN-C 系统
(2)TN-CS 系统
回复
zhangpei123-4
2008年10月13日 07:59:44
21楼
(3)TN-S 系统
(4)TT 系统
(5)IT 系统
图7 系统接地各种型式示意图
一般居民用户可用TN-C-S 系统,即低压从配电变压器引出的主干线可以采取TN-C 系
统(四线制),到用户的支线采取TN-S 系统;工厂车间可以采用TT 系统,电动机用三相
电源,照明用单相电源,配电变压器中性点接地,到车间后,车间设备的外壳单独接地。
需防爆的场所最好采用IT 系统,三根相线或四根(加中性线)送过去,中性点不接地,
外壳单独接地,这样相线碰地或碰外壳,电流很小,不会产生火花,防止爆炸。
如接地点和中性点接地电阻都是4Ω,TN、TT 系统相线接地时,中性点上会产生危险
的电压,该电压U0=110 V。
4 接地电阻的测量
测量配电变压器接地电阻应停用配电变压器(TN 或TT 制式),拆开中性点接线及与
外壳的连线。
主要目的是防止重复接地影响测量结果。
测量可用接地电阻测试仪,布线方向应与架空线垂直方向(电缆线路不限)。
电压电流极应打在比较潮湿的地方,减少其接地电阻,减少测量误差。
测量点的选取,测量接地装置电阻应包括引线和接头的电阻。
判断标准:如为共用接地装置,接地电阻据所在系统的电容电流按R≤50IC 计算出要求
值,如计算值超过4Ω,则按4Ω 选取。
配电变压器防雷接地工程是一项复杂的工程,要考虑防雷接地、保护接地、工作接地
的各种要求,以其中最小值为标准来设计和施工。不要认为“接地”可以马虎从事,它关系到
人身和设备安全的大事,即防雷保护的有效性。接触电压、跨步电压的大小,人体接触外壳
时的电压高低都涉及到电击事故发生的机率,及危害程度,所以必须认真施工,按标准的有
关规定执行,以确保防雷和接地的安全运行。
回复

相关推荐

APP内打开