32楼
Effects of nutrient media composition (COD/N/P ratio) on nutrient removal performance of an SBR have also been investigated by Kargi and Uygur [15] using a statistical experiment design. COD/N/P ratio of 100/3.3/0.7 was found to be optimal resulting in COD, NH4-N and PO4-P removals of 97, 99 and 94%, respectively.
In neither one of the aforementioned studies was the nutrient removal performance of a five-step SBR operation investigated as a function of HRT in each step. Therefore, it was the major objective of this study to systematically investigate the effect of hydraulic residence time (HRT) of each step on the overall nutrient removal performance of a five-step SBR. The cycles consisted of anaerobic – anoxic – oxic - anoxic and oxic (An-Ax-Ox-Ax-Ox) phases with different hydraulic residence times. The most suitable HRT of each phase, resulting in maximum overall nutrient (COD, N,P) removals were determined by using the method of ‘varying one variable at a time’ [16]. Nutrient concentration profiles during the whole course of the operation were also determined for each experiment.
2. Materials and methods
2.1. Experimental set-up
A schematic diagram of the experimental set up is shown in Fig. 1. A fermenter (Bioflo IIC, New Brunswick) with a 51 working volume was used as the SBR. The fermenter was microprocessor controlled for aeration, agitation, pH and dissolved oxygen (DO). Aeration was provided by using an air pump and a sparger. Agitation speed was varied between 25 and 300 rpm. The pH, DO and ORP of the nutrient medium were continuously monitored by the relevant probes.
2.2. Wastewater composition
Synthetic wastewater used throughout the studies was composed of glucose, sodium acetate, NH4Cl, KH2PO4, MgSO4·7H2O, NaHCO3 and certain concentrations of trace salt minerals such as NaCl (100 mgl-1), KCl (20 mgl-1), CaCl2·2H2O, (50 mgl-1), FeCl3·6H2O (50 mgl-1). Typical composition of the synthetic wastewater was CODo = 1000 mgl-1, NT = 50 mgl-1 and PT = 15 mgl-1, resulting in a COD/N/P ratio of 100/5/1.5. MgSO4 and NaHCO3 concentrations in the feed were 0.1 gl-1 and 0.5 gl-1, respectively, throughout the studies.
2.3. Organisms
A mixture of heterotrophic organisms capable of oxidizing carbonaceous compounds and denitrification; autotrophic nitrifying organisms; anaerobic organisms (acid producers) and excess phosphate uptaking organisms (EPUO; Acinetobacter sp.) were used as the inoculum culture. Nitrification organisms (Nitrosomonas and Nitrobacter) were obtained from Clemson University, SC, USA. The heterotrophic mixed culture was obtained from the Cigli Municipal Wastewater Treatment Plant, izmir. Acinetobacter calcoaceticus (NRRL-552) obtained from the USDA, National Research Laboratories, Peoria, IL, USA was used for luxury phosphate uptake. These cultures were cultivated in suitable growth media in the form of a mixed culture. The concentration of the mixed microbial culture was approximately 1.1 gl-1 at the beginning and increased to 1.5 gl-1 at the end of the operation.
回复
33楼
2.4. Experimental procedure
The reactor was filled with the synthetic wastewater, inoculated with a mixed culture of micro-organisms and was operated batch wise with aeration and mixing for several days to obtain a dense culture initially. After sedimentation of the organisms, 41 of the clear supernatant was removed and the 11 dense biomass culture was completed to 51 total volume with 41 defined nutrient media addition. Subsequent anaerobic, anoxic and oxic operations were applied in sequence. Nitrogen gas was passed through the media only during the anaerobic operation. Agitation speeds during the anaerobic and anoxic cycles were 25 and 50 rpm, respectively. The media was aerated and agitated (300 rpm) vigorously during the oxic (aerobic) operation. Samples were withdrawn from the reactor at the beginning and at the end of each phase for analysis. At the end of each SBR operation, the biomass was settled for 1/2h and 41 of the treated wastewater was removed. Settled organisms were used for the next treatment operation. About 1/10 of the culture was removed from the reactor daily before settling to adjust the sludge age to 10 days. Temperature and pH was controlled around T=25℃ and pH=7-7.5. dissolved oxygen concentration in oxic (aerobic) phase was kept above 2 mgl-1, while the DO during anaerobic and anoxic phases was practically zero. Oxidation-reduction potentials (ORP) were approximately –250mV, -70mV and +250mV for the anaerobic, anoxic and oxic phases, respectively. Each experiment was conducted three time. The first operation was for the adaptation of the culture and the next two runs were for the collection of data. Since the results of the two experimental runs were almost the same (<3% difference), no further replicate experiments were conducted.
2.5. Analytical methods
Samples (20ml) were withdrawn from the liquid media at the beginning and at the end of each phase (anaerobic, anoxic and oxic) and were centrifuged at 6000 rpm for 30 min to remove micro-organisms from the liquid medium. Clear supernatants were analyzed for COD, NH4-N and PO4-P contents. Standard kits (Merck-spectroquant) and spectrometric methods were used for nitrogen and phosphorous analysis. COD, total solids (TS) and total suspended solids (TSS) concentrations were determined by using the Standard Methods [17]. DO and pH measurements were done by using the probes and analyzers associated with the microprocessor controlled fermenter (New Brunswick). Biomass concentrations were determined by filtering the samples through 0.45 µm Millipore filter and drying in an oven at 105℃ to constant weight. Samples were analyzed in triplicates. The standard deviation in measurements was less than 3% of the average.
3. Results and discussion
3.1. Nutrient removals as function of hydraulic residence times
When determining the most suitable residence time for each step, the HRT of this step was varied at four different levels while the others were kept constant according to the method of ‘varying one variable at a time’ [16]. The sludge age was constant at 10 days, throughout the experiments.
回复
34楼
3.1.1.The anaerobic step
Variations of COD, ammonium-N and phosphate-P with the HRT in this step are depicted in Fig. 2. The anaerobic step are depicted in Fig. 2. The anaerobic step behaves like a selector for excess phosphate uptaking organisms. Polyhydroxy butyrate (PHB) is synthesized and deposited by the EPUO in this step resulting in COD removal from the wastewater. The HRT of the anaerobic step was varied between 1 and 2.5h, while the HRT’s of the other anoxic Ⅰ, oxic Ⅰ, anoxic Ⅱ, oxic Ⅱ steps were constant at 1.5, 4.5, 1.5 and 1.5h, respectively. COD removal efficiency was nearly 96% at HRT values around 1.5-2h and dropped to nearly 68% at a residence time of 2.5h. ammonium-N removal efficiency was maximun (88%) at an HRT value of 1.5h. Phosphate-P removal efficiency increased with HRT and reached a maximum level of nearly 71%, at an HRT of 2h. On the basis of these results, the most suitable HRT for the anaerobic step was selected as 2h, resulting in overall COD, NH4-N and PO4-P removal efficiencies of 96, 88 and 71%, respectively. Biomass concentrations in the reactor varied between 1150 and 1250 mgl-1 for different HRT’s of the anaerobic step.
3.1.2.The first anoxic step
Fig.3 depicts variations of COD, ammonium-N and phosphate-P removal efficiencies with the HRT of the first anoxic step. The HRT of the this step was varied between 1 and 2.5h while the HRT’s of the anaerobic/oxic Ⅰ/ anoxic Ⅱ/ oxic Ⅱ step were kept constant at 2, 4.5, 1.5 and 1.5h, respectively. The major functions of the anoxic step are denitrification and COD removal. Overall COD removal efficiency varied between 96 and 98% for HRT values between 1 and 2.5h. Ammonium-N removal efficiency showed a minimum at an HRT value of 1.5h and became maximum (87%) at an HRT of 1h. HRT of 1h also resulted in maximum phosphate-P removal efficiency (90%). Since almost all nutrient removal efficiencies were maximum at an HRT of 1h, this residence time was selected as the most suitable one for the first anoxic step. Overall COD, NH4-N and PO4-P removal efficiencies were 98, 87 and 90%, respectively, at 1h HRT of the first anoxic step. The biomass concentration in the reactor was between 1200 and 1300 mgl-1, for different HRT’s of the first anoxic step.
回复
35楼
3.1.3.The first oxic (aerobic) step
Variations of COD, ammonium-N and phosphate-P removal efficiencies with the HRT in this step are depicted in Fig.4. The HRT of this step was varied between 2 and 6h while the HRT’s of anaerobic/anoxic Ⅰ/ anoxic Ⅱ/ oxic Ⅱ steps were kept constant at 2/1/1.5/1.5h, respectively. The major functions of the oxic (aerobic) step are COD removal, nitrification and excess phosphate uptake. Percent COD removal showed a slight change with the HRT, resulting in a maximum of 98% at an HRT of 4.5-6h. ammonium-N and phosphate-P removal efficiencies were also maximum at 87 and 90%, respectively, for the HRT of 4.5h. Therefore, the most suitable hydraulic residence time for the first oxic step was selected as 4.5h, resulting in overall COD, NH4-N and PO4-P removal efficiencies of 98, 87 and 90%, respectively. The biomass concentrations in the first oxic step varied between 1350 and 1450 mgl-1 for different HRT’s tested.
3.1.4.The second anoxic step
Fig.5 presents variations of COD, ammonium-N and phosphate-P removal efficiencies with the HRT of this step. The major function of the second anoxic step is COD removal and denitrification of any nitrate ions produced during the first oxic step as a result of nitrification. The HRT of this step was varied between 1 and 2.5h while the HRT’s of the anaerobic/anoxic Ⅰ/ anoxic Ⅰ/ oxic Ⅱ steps were kept contant at 2/1/4.5/1.5h, respectively. COD removals at all HRT’s tested were above 95% and very similar. Ammonium-N removal efficiency increased with HRT and showed a maximum (90%) at an HRT of 2h while the efficiency was close to this value (87%) at an HRT of 1.5h. Phosphate removal efficiency was maximum (90%) at an HRT of 1.5h. On the basis of these results, an HRT of 1.5h was selected as the most suitable HRT resulting in overall COD, NH4-N and PO4-P removal efficiencies of 97, 87 and 90%, respectively. Biomass concentrations in the second anoxic step varied between 1450 and 1600 mgl-1 for different HRT’s tested.
回复
36楼
3.1.5.The second oxic (aerobic) step
Nutrient (COD, NH4-N and PO4-P) removal efficiencies as a function of HRT are depicted in Fig.6 for this step. The HRT of this step was varied between 1.5 and 3h while the HRT’s of the other anaerobic/anoxic Ⅰ/ anoxic Ⅰ/ anoxic Ⅱ steps were kept constant at 2/1/4.5/1.5h, respectively. COD removal efficiencies were above 95% at all HRT’s tested. Ammonium-N removal efficiency was maximum (87%) at an HRT of 1.5 and 3h. Phosphate-P removal efficiency was also maximum (90%) at an HRT of 1.5h. Therefore, the most suitable hydraulic residence time for this step was found to be 1.5h, resulting in overall COD, NH4-N and PO4-P removal efficiencies of 97, 87 and 90%, respectively. The biomass concentrations varied between 1350 and 1450 mgl-1 for different HRT’s of this step.
3.2. Nutrient concentration profiles at the selected HRT’s
Fig.7 shows variations of nutrient (COD, NH4-N and PO4-P) concentrations with time when the system was operated at the selected HRT values of each step. COD concentration dropped steadily reaching a level of below 40 mgl-1 within 8h. Carbonaceous compounds making the COD were used for PHB synthesis and deposition during the anaerobic step without any significant ammonium-N removal. Most of the COD was used during the first oxic step by aerobic oxidation. NH4-N concentration decreased rather slowly and reached a level of nearly 6 mgl-1, from an initial value of 45 mgl-1, at the end of 10.5h of operation. Major ammonium removal was realized during the first oxic step by assimilation into the biomass and nitrification to nitrate. Phosphate-P concentration was nearly constant during the first two anaerobic/anoxic steps and decreased significantly during the oxic (aerobic) step because of phosphate assimilation and excess uptake. The final concentration of PO4-P was nearly 0.4 mgl-1 at the end of 10.5h operation. COD, NH4-N and PO4-P concentrations at the end of the five-step SBR operation were 34, 6 and 0.4 mgl-1, respectively, when the system was operated at the most suitable HRT of each step.
4. Conclusions
Nutrient removal from synthetic wastewater was realized in a five-step SBR (anaerobic/anoxic/oxic/anoxic/oxic) at different HRT’s. By using the method of ‘varying one variable at a time’, the HRT of each step was constant. The sludge age was kept constant at 10 days throughout the experiments. The anaerobic and first anoxic steps should be operated at short residence times of 2 and 1h, to obtain the most efficient nutrient removals. The first two steps do not contribute COD and NH4-N removal considerably. However, nitrogen removal by denitrification takes place during the first two phases. The HRT of the first oxic (aerobic) step should be nearly 4.5h, in order to obtain effective COD removal, phosphate uptake and nitrification. The next anoxic and oxic steps do not require large residence times, since most of the COD and NH4-N were removal during the first oxic phase. Residence times of 1.5h for the last anoxic and oxic steps were sufficient for the removal of residual nutrients.
COD and NH4-N removals were realized with high efficiencies at different HRT levels. The determining factor in selecting the most suitable HRT was the phosphate removal efficiency since excess phosphate uptake is required for effective phosphate removal. When the system was operated at a sludge age of 10 days and HRT’s of 2/1/4.5/1.5/1.5h for the anaerobic/anoxic Ⅰ/ oxic Ⅰ/ anoxic Ⅱ/oxic Ⅱ steps, COD, NH4-N and PO4-P were 34, 6 and 0.4 mgl-1, respectively, at the end of 10.5h of total operation time, when each step was operated at the most suitable residence time.
Acknowledgements
This study was supported by the research funds of Uludag University, Bursa and Dokuz Eylul University, Izmir, Turkey.
那位大侠帮帮小弟啊!!!!!!!!
回复
37楼
给我也来一份,谢谢了,maxin_com@163.com
回复
38楼
那个能把这些译成英语
传统的刺激泥治疗程序的 lindane 的命运
A. M. Kipopouloua , A. Zouboulisb , C. 翼果和 Th。 Kouimtzisa
一间环境的污染控制实验室,化学部, Thessaloniki , GR-54124 , Thessaloniki 的亚里斯多德大学,希腊
b 一般和无机的化学技术实验室,化学部, Thessaloniki , GR-54124 , Thessaloniki 的亚里斯多德大学, 希腊
被一般承认的 2003 年二月 3 日; 校订了 2003 年七月 4 日; 接受了 2003 年十一月 4 日。
摘要
一项飞行员- 刻度的 treatability 研究被运行评估在传统的刺激泥模态中操作的废水治疗厂的 lindane(-hexachlorocyclohexane) 的命运。 与可变的 lindane 集中一起以大钉钉牢的不同类型的废水 (工业的和市政的) 为了要在各种不同的操作情况之下决定分配和移动 , 以不同的配比率被用。 对治疗程序的主要量的 lindane 输入被发现在主要的泥中集中。 在化合物分割系数 (logKp) 和主要泥 (foc) 的有机分数之间的一个重要的线相互关系被发现。 在主要的泥固体上的 Sorption 被总结是主要的移动机制。 2.8% 的只有 0.1 – lindane 输入在刺激的泥中被集中。 Lindane 主要的治疗失败是低的 (4 – 26%) 。 较高的损失 (达到 61%) 在对 biodegradation 是或许适当的生物学的治疗期间被观察。 这些损失进入透气箱之内对 lindane 的流入率感到否定地有相互关系。 刺激了泥年老的呈现最大 lindane 的损失大约 23 d。 增加的泥年龄与最后的流出物的 lindane 的增加百分比有关。
作家牛鼻子字: 刺激了泥程序; Lindane; 有机氯杀虫剂杀虫剂; 废水治疗
文章大纲
1. 介绍
2. 材料和方法
2.1. 试验工场描述
2.2. 操作的情节
2.3. lindane 的分析
3. 结果和讨论
3.1. 试验工场表现
3.2. 废水治疗的 lindane 的分配种植
3.3. 状态区分
3.4. 块 lindane 的平衡
4. 结论
叁考
1. 介绍
有机氯杀虫剂的杀虫剂 (OCPs), 包括 lindane(-hexachlorocyclohexane),已经在过去由于他们的广大使用被辨认出如一个主要的环境问题,对抗化学的/ 生物学的降格他们的显着持续 , 和 bioconcentrate 的他们趋势。 虽然大多数的 OCPs 已经在过去数年期间被管理, 但是一些仍然被用 (或许违法地) 或在许多国家中生产 ([Jaffe,1991]; [Ro 和天秤座,1995]). OCPs 被经由漫射来源 (农业的表面流水) 主要地进入环境之内介绍, 但是也从点来源 ( 制造位置)([美国环保署,1979]; [Saleh et al。,1980]; [Petrasek et al。,1983]; [Hannah et al。,1986]; [Haverhoek et al。,1997]). OCPs 可能进入废水治疗厂或由于工业解除的贡献或如一个都市表面流水或排水的成份进入排水设备系统之内 ([Petrasek et al。,1983]; [Haverhoek et al。,1997]; [Katsoyiannis 和翼果,2002]). 废水治疗厂的这些 xenobiotic 有机化合物的命运将会被化合物和那程序设计的 physico- 化学财产统治两者而且操作治疗系统的情况 ([Bhattacharya et al。,1996]; [Mikkelsen et al。,1996]; [Jacobsen et al。,1996]; [Byrns,2001]).
文学数据在废水治疗程序期间关于 lindane 的命运是相对地很少的和相当可变。 资讯科技已经被发现对生化是反抗的在一个特定的抱蛋方法下面的废水 microbiota 的氧化活动 ([Tabak et al。,1981]), 和贫穷地生物所能分解的被整合的刺激碳/ 刺激泥程序 ([Lopez,1989]; [OBrien,1992]).在相反又其他的研究员身上为被刺激的泥程序由于 biodegradation 在范围 18 – 25% 中报告了 lindane 损失,当损失 42% 和 80% 在暴露于空气中被发现,而且授权的咸水湖处理的时候, 分别地 ([Petrasek et al。,1983]; [Hannah et al。,1986]; [Stubin et al。,1996]). Lindane 在支流和一些市政的废水治疗的流出物的其他有机的优先污染物质之中已经被决定厂 ([美国环保署,1982]; [Stubin et al。,1996]).然而, 这些传统的治疗 lindane 的移动厂非常低而在被与支流相较的流出物中的较高 lindane 集中在一个氯化阶段在治疗程序的结束中被雇用的情形中被观察。 [Petrasek et al。,1983] 也报告了 55% 的流入 lindane 保持在最后的流出物中。 主要的澄清阶段的 lindane 的可以忽略移动已经被发现被 [Hannah et al。,1986], 当在这一个阶段中的 50 – 75% 移动已经被报告的时候被 [McIntyre et al。,为总计的氯化杀虫剂的 1981]。 另一方面,粉刺激了碳 (契约) 和没有空气而能生活的扩大- 床小粒刺激了反应者治疗程序产生了 lindane 移动比 99.5% 大的碳 (GAC)([Dietrich et al。,1988]; [Lopez,1989]; [Narayanan et al。,1993]).
这一张纸在废水治疗程序期间尝试阐明 lindane 的命运。 对于这一个目的, 飞行员- 刻度的废水治疗在传统的刺激泥模态中操作的厂被雇用。 与不同的 lindane 集中一起以大
回复
39楼
摘要: 十二个浅的沙子过滤器 (0.38 m 深处, 名义上 1.2 m 的直径) 间歇地被主要的流出物装载评估水力载入的效果率 (HLR), 配频率 (DF), 和过滤器生物化学氧要求的在移动上的媒体特性 (泥团)
而且化学的氧要求 (雪),中止了固体 (SS) ,混浊, 和有机的和氨氮。 在 0.041 和 0.652 m/d1 之间的水力载入率在一个 85 天的时期期间被在次/d 4 和 24 之间在 DFs 应用。 有效的媒体大小 (d10) 从和同样系数的 0.29 到 0.93 毫米排列在 1.4 和 4.52之间. 在 0.163 m/ d 的 HLR 和一配频率次/d 24 ,流出的质量对来自先进的废水治疗设备的流出物是优良的和可比较的。明确地,为泥团, SS 平均在 90 和 99% 之间的移动率, 有机的和氨氮和混浊, 和至少 81% 对于雪,发生,不管媒体特性。
回复
40楼
生物学的营养移动的水力住宅时间效果使用五- 步骤序列一届反应者
Fikert Kargi,Ahmet Uygur
环境工程学, dokuz Eylul 大学, Buca , Izmir 部,土耳其
被一般承认的 2003 年九月 19 日; 在校订的形式 2004 年四月 8 日中收到; 一般承认的 2004 年四月 8 日
摘要
来自综合性的废水营养的移动在一五-在不同的水力住宅时代 (HRTs) 序列一届反应者 (SBR) 的步骤被调查。 营养的移动程序有没有空气而能生活的 (一), anoxic(斧头) , oxic(牛) , anoxic(斧头) , oxic(牛) 和设定时期。 泥年龄 (SRT) 在 10 天被保持常数而每状态的 HRT 被改变。 每状态对雪的水力住宅时间的效果,氮 (NH4-N) 和磷酸盐 (PO4-P) 移动被调查。 每状态的水力住宅时间在四不同的水平和最适当的住宅时间被改变,造成最大的全部营养的移动被决定。 最高的观察了移动效率是 96,87 和 90% 的雪,氮 (NH4-N) 和磷酸盐 (PO4-P),分别地, 与一/ 斧头/牛/斧头/ 牛状态住宅时代的 2/1/4.5/1.5//1.5 h 一起获得。
© 2004 Elsevier 公司所有的权利保留。
牛鼻子字: 生物学的营养; 水力的住宅时间; 序列一届反应者
1. 介绍
序列一届反应者 (SBR) 本来已经作为雪和磷酸盐来自废水的移动 [1-6]. 由于在营养的解除方面的最近规则继续的一届反应者系统已经被修正达成氮移动除了欺骗而且用磷酸盐处理移动之外。 SBR 治疗系统有一届步骤在循环的操作方面填充, 反应, 安顿, 轻轻倒出而且不作事。 步骤在那反应周期被调整提供没有空气而能生活的 , anoxic 和需氧性的时期在特定的数字和序列中给生物学的营养移动。
若干的研究已经在营养的移动上的文学中被报告 [7-15]. Colunga 和 Martinez[5] 学习了不同时期在生物膜 SBR 对雪,磷酸盐和氨氮移动的效果。 雪和 PO4 的最高移动效率-P 为没有空气而能生活的/ 需氧性的时期与 12 h 周期和 37/63% 的状态比一起获得。
Umble 和 Ketchum[7] 学习了一个序列一届反应者一个市政的废水生物学治疗。 12 h 总数分别地周期造成 BOD5 , TSS 和 98,90 和 89% 的 NH4- N 移动。
影响作为营养的移动 SBR 的表现重要的程序变数被张和 Hao 调查了 [8] 和 98%,分别地, 在一个固体保持 10 天的时候,藉由总周期的 6 h。
为总周期长度和状态分配的最佳化的一个运算法则在次序将流出的氮内容减到最少被 Andreottola et al 发展了。 [11]. 最适宜结果已经与 anoxic 的 3.3 h 一起获得而且获得没有空气而能生活时期的 4.2 h 。 分别地流出的硝酸盐,亚硝酸盐和氨盐基内容是 2.9,0.04 和 0.06 mgl-1 。
张 et al。 [12] 实行一个小规模的 SBR 系统的实验研究定义影响营养的移动表现的重要叁数。 最大的氮和发磷光的移动与 1-3 一起获得-没有空气而能生活–需氧性 - anoxic 时期的 2 h。 少于 2 mgl-1 的最后 N 和 P 集中被获得。
一个用没有空气而能生活的/需氧性的/anoxic/ 需氧性的四反应时期序列一届反应者的生物膜的组合磷和氮移动被 Zuniga 和 Martinez 调查了 [13]. 分别地系统成功地被 89 ± 1% , 75 ± 15% 和 87 ± 10% 的雪,磷酸盐和氨氮移动操作。
Kargi 和 Uygur[14] 学习了来自一个以 SBR 作为泥年龄的一个功能的综合性的废水营养的移动。 分别地十天的泥年龄被发现对于雪, NH4- N 和 PO4-P 是最佳的造成 94,84 和 70% 的营养移动。
SBR 的营养媒体作文 (雪/N/P 比) 对营养移动表现的效果也已经被 Kargi 和 Uygur 调查 [使用统计的实验 15] 设计。 分别地 100/3.3/0.7 的雪/N/ P 比被发现是最佳的造成雪, NH4- N 和 97,99 和 94% 的 PO4- P 移动。
在没有一个里面上述的研究是被调查如每个步骤的一个 HRT 的功能五个步骤的 SBR 操作的营养移动表现。 因此,它是这一项研究的主要目的有系统地调查水力住宅时间 ( HRT) 每个步骤对五个步骤的 SBR 的全部营养移动表现的效果。周期有没有空气而能生活– anoxic – oxic-anoxic 和 oxic(一-斧头-牛-斧头-牛) 以不同的水力住宅时代逐步实行。 每状态的最适当 HRT,造成最大的全部营养的 (雪, N,P) 移动被藉由使用‘的方法改变一次一个变数决定’[16]. 在操作的整个课程的时候营养的集中描绘也被为每实验决定。
回复
41楼
2. 材料和方法
2.1. 实验的组-提高
实验的组一个概要图表向上在图 1 中被显示。 一以 51 工作册发酵 (Bioflo IIC,新的布兰斯维克) 被当作 SBR 使用。 那使是对于透气,激动, pH 被控制并且溶解了氧的微处理器发酵.(做) 透气被藉由使用一个排气唧筒和 sparger 提供。 激动速度在 25 和 300个转/每分之间被改变。 pH, 做,而且营养的媒体 ORP 不断地被有关的探查检测了。
2.2. 废水作文
在研究各处被用的废水由葡萄糖,钠醋酸盐, NH4Cl , KH2PO4 , MgSO4 · 7 H2O , NaHCO3 和痕迹的特定集中组成的合成物质加盐于矿物 , 像是 NaCl(100 mgl-1) , KCl(20 mgl-1) , CaCl2 · 2 H2O,(50 mgl-1), FeCl3 · 6 H2O(50 mgl-1). 综合性的废水典型作文是 CODo=1000 mgl-1 ,新台币 =50 mgl-1 和 PT=15 mgl-1,造成一个 100/5/1.5 的雪/N/ P 比。 饲养的 MgSO4 和 NaHCO3 集中是 0.1 gl-1 和 0.5 gl-1,分别地,在研究各处。
2.3. 生物
能够氧碳的化合物和 denitrification 的一个异养生物生物的混合; autotrophic 硝化生物; 没有空气而能生活的生物 ( 酸生产者) 和过度磷酸盐举起生物 (EPUO; Acinetobacter sp.) 被当作 inoculum 使用耕种。 氮化合生物 (Nitrosomonas 和 Nitrobacter) 从 Clemson 大学, SC ,美国被获得。 异养生物的混合文化从 Cigli 市政的废水治疗厂, izmir 被获得。 Acinetobacter calcoaceticus(NRRL-552) 从 USDA ,国民研究实验室, Peoria , IL 获得,美国作为奢侈磷酸盐举起。 这些文化以混合的文化形式在适当的生长媒体中被种植。 混合的微生物的文化集中大约在开始是 1.1 gl-1 并且在操作结束的时候增加到 1.5 gl-1 。
2.4. 实验的程序
反应者充满综合性的废水,以微的混合文化接种- 生物而且被操作对透气感到明智的一届而且混合为一些每天最初获得密集的文化。 在生物的沈殿之后,浮在表面的清楚人中的 41 是离开的和 11 密集的生物量文化被完成到 51 总册由于 41 定义了营养的媒体附加。 后来的没有空气而能生活的,anoxic 和 oxic 操作在序列中被应用。 氮瓦斯在没有空气而能生活的操作期间只有被通过媒体。 激动加速在那的时候没有空气而能生活的而且分别地 anoxic 周期是 25 和 50个转/每分。 媒体被在 oxic(需氧性的) 操作期间精力充沛地使使摇动 (300个转/每分) 暴露于空气中而且。 样品被撤回反应者从最初的地方和在每状态底对于分析。 在每 SBR 操作结束的时候,生物量为 1/2 h 被安顿,而且被对待的废水中的 41个被移动。 固定的生物作为下治疗操作。 大约文化中的 1/10个在解决调整泥年龄到 10 天之前从每日的反应者被移动。 温度和 pH 在 T=25 ℃和 pH=7-7.5 的周围被控制。 被溶解的 oxic(需氧性的) 状态的氧集中被保持在 2 mgl-1 上面, 当那的时候在没有空气而能生活的时候和 anoxic 时期实际零。氧化- 减少的潜能 (ORP) 大约是– 250 mV,-70 mV 和 +250 mV 分别地对于没有空气而能生活者, anoxic 和 oxic 逐步实行。 每实验被引导三次。 第一操作是给文化的改编,而且下二奔跑是给数据的收集。 既然二实验的奔跑结果几乎是一样的,没有较进一步的统计实验实验被引导。
2.5. 分析的方法
样品 (20 毫升) 被撤回液体的媒体从最初的地方和在每状态 (没有空气而能生活的,anoxic 和 oxic) 底而且以 6000个转/每分被离心分离机 30 分钟把微 - 生物从液体的媒体移开。 清楚的浮在表面的被为雪, NH4- N 和 PO4- P 的内容分析。标准装备 (Merck-spectroquant) ,而且分光的方法作为氮和发磷光的分析。 雪,总固体 (TS) 和总计的中止固体 (TSS) 集中被藉由使用标准的方法决定 [17].做,而且 pH 测量被藉由使用探查做,而且与被控制的微处理器有关的分析者发酵 (新的布兰斯维克) 。 生物量集中经过 0.45& 微被过滤决定了样品; m 微孔过滤器过滤器而且在 105 ℃的一个烤箱中弄干对持续的重量。 样品在一式三份中被分析。 测量的标准偏离是一点也不 3% 的平均。
3. 结果和讨论
3.1. 如水力住宅的功能时代的营养移动
当为每个步骤决定最适当的住宅时间的时候,当其余者被使依照‘的方法常数继续每次改变一个变数的时候,这一个步骤的 HRT 以四个不同的水平被改变’[16]. 在实验各处泥年龄在 10 天是常数。
3.1.1.没有空气而能生活的步骤
雪的变化,氨盐基-N 和磷酸盐-和这一个步骤的 HRT 的 P 在图 2 中被描述。 没有空气而能生活的步骤在图 2 中被描述。 没有空气而能生活的步骤为举起生物的过度磷酸盐像一个选择者一样行为表现。 Polyhydroxy butyrate(PHB) 被造成来自废水的雪移动的这一个步骤的 EPUO 综合而且存放。 没有空气而能生活的步骤 HRT 在 1 和 2.5 h 之间被改变, 当另一个 anoxic Ⅰ, oxic Ⅰ, anoxic Ⅱ的 HRT’s 的时候, oxic Ⅱ分别地步骤以 1.5,4.5,1.5 和 1.5 h 是持续的。 雪移动效率将近是 96% 在 HRT 评价大约 1.5-2 h 而
回复