悬索桥气弹性稳定CFD分析(英文)
zhuyu1210
zhuyu1210 Lv.2
2010年11月04日 14:37:56
只看楼主

论文简介: As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction and rotation around the span axis of the bridge section.

论文简介:

As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction and rotation around the span axis of the bridge section.



附件名:20101141288852676067.zip

文件大小:779K

(升级VIP 如何赚取土木币)

免费打赏

相关推荐

APP内打开