1 概述 在pmt用电源模块领域中,电源模块的输出电压较高,但输出电流很小,总的输出功率不大。但pmt对输出高压的稳定性及纹波噪声的要求很高,尤其是测量微弱光信号时,再加上串联调整控制方式设计简单,而且在低功率场合比开关电源的成本要低,所以在pmt应用领域,串联调整的控制方式相对开关电源来说有很大的优势。但串联调整方式下,调整管的功耗较大,电源模块效率仅有35%,且输出功率较大时调整管需要散热,这导致电源模块体积不能做小。
1 概述
在pmt用电源模块领域中,电源模块的输出电压较高,但输出电流很小,总的输出功率不大。但pmt对输出高压的稳定性及纹波噪声的要求很高,尤其是测量微弱光信号时,再加上串联调整控制方式设计简单,而且在低功率场合比开关电源的成本要低,所以在pmt应用领域,串联调整的控制方式相对开关电源来说有很大的优势。但串联调整方式下,调整管的功耗较大,电源模块效率仅有35%,且输出功率较大时调整管需要散热,这导致电源模块体积不能做小。
针对以上问题,我们在串联调整的基础上进行了改进,通过改变调整管与自激推挽变换器的连接方式,来达到降低功耗,提高效率的目的。改进后的电路,调整管的功耗有了很大的降低,效率可达70%左右。
2 原理介绍
图1是串联调整稳压方式下,实现高压模块的原理框图。
原理为:输入端输入直流低压,经调整管输入到振荡电路,逆变升压,然后通过整流电路形成直流高压。在高压输出端,通过采样电阻将输出信号的变化量,反馈到运算放大器,运算放大器将反馈信号与基准电压比较、放大后去控制调整管,以达到稳压的目的。此图中没有给出调整管与振荡电路的具体连接方法,根据调整管与振荡电路的连接方式不同,可分为电源电压调整和振荡调整两种。
2.1 电源电压调整型
电源电压调整型原理见图2,由图中可见,调整管与振荡电路串联,且调整管充当振荡电路的供电电源,所以输出的功率全部由调整管提供,这里调整管起主要的功率放大作用,而振荡电路中两三极管工作在开关状态,起能量的转换作用,所以此种连接方式下,调整管功耗很大,电源模块整体效率不高。
2.2 振荡调整型
振荡调整型原理见图3,由图中可见,调整管发射极通过电阻连接到振荡三极管的基极,调整管与振荡电路的供电,直接由低压电源来提供,调整管只供给振荡三极管基极所需的电流,对振荡电路起控制作用,而两个振荡三极管工作在放大状态,起放大作用。因此调整管功耗大大降低,整体效率得到了提高。
3 两种连接方式下振荡波形比较
3.1 电源电压调整型振荡波形
电源电压调整型振荡波形见图4,因为两振荡三极管工作在开关状态,所以两管轮流交替导通,振荡幅度取决于输入电压,输出功率与调整管基极电流和放大能力有关。
3.2 振荡调整型振荡波形
振荡调整型振荡波形见图5,从波形上来看,两振荡三极管工作在放大状态,两管交替工作,输出电压幅度和功率与两振荡三极管的放大能力有关。
4 实测数据对比
采用两种控制方式分别做成电源模块,其参数对比如下,见表1。
由表1可见,当输出功率一定时,采用振荡调整型电路的效率比采用电源电压调整型电路的效率,至少高出一倍。
5 结论
从上面的分析可以看出两种电路的实质为,电源电压调整型实际上是调整管进行功率放大,属单管功率放大,所以其效率较低;而改进的振荡调整型电路为两振荡三极管进行功率放大,属双管推挽功率放大,所以其效率比单管高了一倍。