北京MOMA项目建筑设计技术方案-暖通部分万国城3 和 4号楼项目技术方案设计报告HVAC 暖通空调 绿色建筑、节能建筑、生态建筑、可持续建筑、建筑能耗、建筑能源Provisional Design Phase方案设计阶段  分析边界条件和气象条件建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源 Analysis of situation and climate
北京MOMA项目建筑设计技术方案-暖通部分
万国城3 和 4号楼项目技术方案设计报告
HVAC 暖通空调 绿色建筑、节能建筑、生态建筑、可持续建筑、建筑能耗、建筑能源
Provisional Design Phase方案设计阶段
 分析边界条件和气象条件建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
Analysis of situation and climate
 计算采暖和制冷功率F9l F
Computation of power need for heating / cooling建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
计算新风需求量
Computation of air supply need
建议提供设备供应原理节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源:
Proposal for supply principle
Definitive Design Phase 初步设计阶段
 采暖和制冷基础设计节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
Basic design of heating/colding
新风制备的基础设计
Basic design of air preparation.
绿色建筑、节能建筑、生态建筑、可持续建筑、建筑能耗、建筑能源
采暖和制冷送配原理图
Principal lay out of heat/cold distribution
 新风送配工作原理图 绿色建筑、节能建筑、生态建筑、可持续建筑、建筑能耗、建筑能源
Principal lay out of air distribution绿色建筑、节能建筑、生态建筑、可持续建筑、建筑能耗、建筑能源
2楼
1. Calculation of Energy- and Power Need功率和功率强度需求计算
按照优化后的建筑对每一个房间进行了室内气象负荷计算,其结果如表1.1(3号楼的功率和功率强度要求)和表1.2(4号楼的功率和功率强度要求)所示。
2 Analysis Adapted Cooling and Heating Way采暖制冷方式分析
2.1 Traditional Air Conditioning Systems传统空调系统
传统的空调系统是根据不同的制冷负荷循环使用定量的室内空气进行再制冷,如空气交换率为n=5/h,或180m3/h.人,考虑到人需要新鲜空气,其中需要25m3/h.人 (大约总送风量的13.8%)的新鲜空气不断从室外引入并与冷却的循环空气混合,同时有13.8%的混合空气被排除。除了需要把33.50C,相对湿度大于70%的空气冷却到150C以外,为了满足足够量的空气交换还需要连续不断的使用风机使送风和回风达到一定速度。新鲜的空气被混合的空气所替代,污浊的空气被循环所稀释。由于送风和回风量较大,人会有冷风袭击感和噪声感等。从目前的建筑优化后的冷热负荷计算结果来看,其负荷都大大降低了。目前北京市场上的建筑,所以要选择与其相适应的采暖和制冷方式,以使建筑更加高舒服低能耗。
2.2 Thermoactive Floor System TABS 热辐射楼板系统
The thermoactive floor system profits from the fact, radiation transfer to be stronger than air convection. It controls the surface temperatures of a key element as the ceiling to create a comfortable radiation climate.
热辐射楼板系统得益于这样一个事实:辐射比对流更有效(Fig. 2.2.1),而且从人的健康和舒适要求看,人对辐射的要求要大于对对流的要求。控制天花板等主要构件的表面温度,创造一个舒适的辐射环境是非常舒适有效的传热方式
Heating / Cooling 采暖和制冷
All rooms are equipped with the tubing in the concrete floor for heating and cooling. In high winter, water of up to 26o C flows in these tubes and in high summer its temperature goes down to 18oC. In this way, heating power of up to 40 W/m2 and cooling power density of up to 40 W/m2 can be attained by injecting or extracting heat respectively.
所有的房间都在水泥地板内装有水管,用来采暖和制冷。水管中的水在寒冬保持26摄氏度,在盛夏保持180摄氏度。用这种方法,通过分别散发和吸收热量,可以使最大采暖功率和最大制冷功率达到40 W/m2.
This method shows a self control feature: when in winter the room stays at 20oC and the sun begins shining, the temperature will raise and thus the temperature difference to the supply water decreased until at 26oC it attains the value zero. This works without any delay or inertia and correspondingly also for cooling. A momentary overload of a few hours due to internal sources or/ and the sun can be absorbed by the concrete floor due to his high storage capacity and the heat then transported away over night. This method works well and auto-controlled if the user allows a certain variation of the room temperature within the comfort limits. Of course the change of the supply temperature shows a high inertia, needing almost days to react.
回复
3楼
这种方法显示了自我调节的特征:在冬季,室内温度保持在20摄氏度,太阳出来后温度上升,这样,室内温度与水管中水的温度差别越来越小,直到室内温度达到26摄氏度,温度差为零。这套系统不受热惯性的影响。同样,制冷也是如此。某些时段由于室内负荷和日照造成的瞬间超负荷可以被硂板所吸收,因为它有很高的储能容量,储存的热量可以在夜间由循环水带走。如果用户允许室内温度在舒适的范围内有一定的波动,这种方法将会良好运行并能实现自动调节。当然,由于硂储热大,因此楼板升温往往需要几天的时间。
Control Principle: For the high inertia for changing of the supply temperature and for the auto-controlled behaviour within certain limits, a usual control strategy does not make sense. Sudden changes of the weather are decreased in their effect by the high insulation level and thus most of them can be digested within the comfort range. To react on long-term trends however, the system must adapt the supply temperature. For this reason, we propose a control of the supply temperature by the average temperature of the last 24 hours. The external air temperature can be measured by a simple external air sensor and a PC can continuously register and average them. If necessary it can also respect a given time constant.
控制原理:对输送温度的较大惯性和一定范围内的自我调控特性,通常的控制方法满足不了这种要求。高质量的保温把天气突变的影响降到了最低,这样就使温度变化保持在舒适的范围内。然而,要长期发挥作用,该系统必须使用合适的温度。因此,我们建议,用头一天24小时的平均温度作为控制温度。室外气温可以用一个简易的室外空气传感器测量,计算机可以连续记录并进行平均值计算。如果必要,还可以提供参考固定值。
Principally, all rooms are held at the same supply temperature. If in some rooms it gets too warm due to the sun, the sun shading should be used. If in some rooms it gets too warm for other reasons, also a window can slightly be opened. In this way, the inhabitant can control his environment by simple means. If some rooms, as the bed room shall be kept at lower temperature, also the water flow can be reduced for this room, but not by the inhabitant but by the people taking care of the house. They will educated by KT.
首要的是所有的房间都保持同样的输送温度。如果有些房间因日照而变得太热,可以使用外遮阳。如果是因其他原因致使室内过热,还可以通过开一点窗来解决。以上方式可以作为居住者自行调节的最简单方式。如果卧室想保持更低一点的温度,水的流量也可以稍稍减少一点,但这种做法应该由物业管理人员来做,它可以从凯乐技术有限公司得到培训。
Displacement Ventilation 置换新风
The purpose of the principle is to separate the energy transport from the air because air is not well suited to. For this reason, the air supply only has to guarantee the air quality. To attain this goal with a minimum of air, a most efficient air flow must be installed: displacement ventilation. It replaces the polluted air by successively displacing it by fresh air.节
回复
4楼
设计的目的是将能量传递从空气中分离出来,因为有些空气对健康是不适宜的。为此,送风只保证空气质量。为了用最少的空气量达到这个目标,必须建立一种最有效的通风系统:置换新风。它用新风成功有效地替换了污浊的空气。
All rooms except the toilet, bath and kitchen are supplied with fresh air from outlets at the exterior wall in the floor. From there the air fills up the room at very low speed. Low speed mean, no draught is caused. The “fresh air lake” fills the room slowly from the bottom. The inhabitants and other internal loads create an up wards flow due to their buoyancy. The warm air flow produced in this way feeds the nose with fresh air, picks up the sweat and others from the human body and arrives at the top from where it is taken away by the exhaust air outlet.
除了卫生间、浴室和厨房之外,所有房间新风都从地板中贴近窗口处送出。新风以非常低的速度充满整个房间。所谓的低速,就是不产生气流。新风从房间的底部慢慢地充满整个房间。居住者和其他室内热荷载加热新风,产生上升的气流。这种方式产生的暖气流带着新鲜空气流入人的鼻子,带走了身上的汗味及其它混浊气体,最后,到达房间的顶部,并在那里从排气孔排出。
To save air, in the apartments the exhaust air from living room and bedrooms is brought to the kitchen, toilet and bath. There it creates a high air change and picks up all the bad odors. An air change rate of 0.6 h-1 is installed in the bed and living rooms and results at about 2 h-1 for toilets, bath and kitchen.
为节省空气,起居室和卧室中的气体被排送到厨房、卫生间和浴室。在那里,产生强大的换气,带走所有污浊气体和潮湿气体。卧室和起居室的空气置换率是0.6h-1~1h-1,卫生间、浴室和厨房为2h-1。建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源4b!A a%?%P.a c#[
To avoid any condensation on the floor slabs in summer, the air supplied is kept at a dew point of 14oC to keep some reserve for the pick up of moisture in the room and to stay below the surface temperature of the ceiling.
为了避免夏季楼板上的凝露,送进的新风保持在14摄氏度的露点温度,以保证能够除去室内湿气,并使其露点温度低于天花板的表面温度。节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
2.3 Main Characteristics Compare 不同采暖和制冷系统主要性能比较
3. Energetic Concept / Room Systems 能量概念与房间系统
3.1 Room Design and Parameter Needs 房间设计和参数
Table 3.1.1 Room data and equipment房间尺寸与设备
回复
5楼
Temperatures 温度 Noise 嗓声 Winter 冬季 Summer 夏季
SummerTopEnergy建筑节能&绿色建筑论坛
夏季 Winter
冬季 Humidity
湿度 Air noise
空气嗓声 Impact Noise
碰撞嗓声 HeatingTop
采暖 Cooling
制冷 humidify
加湿 dry
除湿 m2/Person Air volume
空气体积 Air changeTopEnergy建筑节能&绿色建筑论坛
空气交换率
Appartments 公寓 26 20 30<f<60 <=35dB <=45dB TABS TABS yes yes 25-50 >25m3/hp >1.6 m3/m2h 0.6 h-l
Shops 商场 28 20 30<f<60 <=45dB <=50dB TABS TABS+ yes yes >2 >30m3/hp >30 m3/m2h 10 h-l绿色建筑、节能建筑、生态建筑、可持续建筑、建筑能耗、建筑能源
Lobby 大厅 28 20 30<f<60 <=35dB <=45dB TABS TABS+ yes yes >10 >30m3/hp >3 m3/m2h 1.2 h-l节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
3号楼新风量和风口截面计算见表3.1.2
4号楼新风量和风口截面计算见表 3.1.3
3.2 Concept Overview 概念总览
从能源选择上,本系统推荐使用地下热泵系统,其优点是:一次性投资少,设备运行费用低,能源无污染。顶部无需加冷却塔。原理图见图3.2.1和图 3.2.2。
3.3 Room Systems 房间系统设计
3.3.1 Basic Principle基本依据
The basic principle respects the elementary physics of human comfort: being more sensitive to heat radiation than to air convection. For this reason the basics comfort is attained by controlling the surface temperatures (=radiation climate) in a room: mainly ceiling, partially also the floor, keeping all other surface temperatures near to the room temperature by a good insulation level. The ventilation is used only for assuring the air quality and can thus be minimized respecting the hygienic conditions. It also must not be controlled and varied
按人体舒适的基本物理条件:对热辐射比对空气对流更敏感。为此,通过控制室内的表面温度(辐射温度)以达到基本的舒适度,主要是天棚,部分要考虑地板,外维护结构应拥有良好的隔热措施,保持所有的表面温度接近室内温度。通风只是用来保证空气质量,考虑到空气条件,这样风量可以降到最小。
回复
6楼
The conditions for the apartments and the shops however are different:
公寓和商场的情况是不同的
3.3.2 Apartments 公寓
• 住宅的公用走道、门厅、电梯间应设分体式空调器(一拖多机),以减少公用场合的空气含湿量(相对湿度),防止每户户门内的项部出现局部结露的可能性(尤其是阴雨天),并提高公用部分的舒适度)。节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑源
• 每栋楼的新风系统,应配用全热式空气换热器(热回收),不宜用显热式。建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源8n
• 每户如果用分户计量(冷、热)方式,宜用远传计费式计量表(因集合器及计量表都在户内,查表进户不方便),远传终端可设在物业管理部门或每栋楼的管理室
3.3.3 Shops 商店
For the shops, the density of the internal sources: people, lighting, exhibits etc. can’t easily be forecasted. For this reason, a basic supply analog to the apartments and additional power points will be installed wherefrom additional cold can be taken. They can be used for recycling air units or for cooled ceilings: heat islands. 节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
对商店来说,由于目前还无法预见服务内容,故室内负荷不容易被预见,例如:人数、照明、展品等。为此,需要安装一个额外设备以备额外制冷之用。它们可以用于循环式空气制冷设备、外露式制冷梁等。商店中气温控制原理图如图3.3.2所示。
4 Heating and Cooling Principle 采暖和制冷设计原理绿色建筑、节能建筑、生态建筑、可持续建筑、建筑能耗、建筑能源-
Since the supply temperatures for heating and for cooling are kept moderate due to the low power densities needed, it makes sense to use a heat pump for heating as well as for cooling.
因为所需要的功率低,输送的采暖和制冷温度保持适度,才有可能使用热泵采暖和制冷。
天棚水系统原理设计图如 图 4.1所示。
5 . Air Preparation Principle 新风制备原理
Heat and cold are produced by the same heat pump as it works for the TABS. The air can be humidified and dried according to the need. It is distributed in 3 circles: 2 from the top one from the basement to keep the dimensions of the main channels low.建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
采暖和制冷由同一个热泵承担(与硂板中的水管的冷热源用一个泵)。空气能够根据需要被加湿或除湿。这分布在3个环路中:2个在地上,1个在地下,以保持主要通道的最小尺寸。
新风机如图 5.1所示,管道送配示意图如图5.2和图5.3所示。
6. Prices of Available Resources能源价格与运行费用
6.1 能源价格
• 热电暖产出投资仅为外网及换热站,不包括电厂,运行费按 16元/GJ,燃煤按从电厂购热价计算;
• 电费按0.39元/(KWh)计算; 低谷电费按0.20元/(KWh)计算;
• 燃气按价格1.4元/m3,TopEnergy建筑节能&绿色建筑论坛
• 低谷电费按0.20元/(KWh)计算;
• 燃气按价格1.4元/m3, 热值36MJ/m3计算;
回复
7楼
6.2 Computation of Power and Energy need as well as energy costs 计算功率和能耗及运行造价
6.2.1 计算说明
The peak power values have been computed based on the design values for Beijing:
最大功率已经根据北京的设计值计算出来;
Winter: -12 degree; Summer 33.2 degree.冬季-12度,夏季33.2度
For the summer peak values for radiation the following values have been taken: South: 700 W/m2 // West/East: 800 W/m2, North 250 W/m2. They are for sure on the save side (see optimization).
夏季的辐射最大功率分别取:南向700 W/m2,东向或西向800 W/m2,北向250 W/m2,
这些都是很保守的值(参考优化)。
For the power and energy for the air supply, a heat recovery with an efficiency of 70% for heating and 50% for cooling has been adopted, while only 2/3 of the return air pass the heat recovery, 1/3 (kitchen return air) is exhausted directly
对送风功率和能量,采用70%的采暖回收率和50%的制冷回收率,但是只有2/3的循环空气参与热回收,1/3的空气(厨房的循环空气)直接排出。
For the computation of energy, the Climate-Surface-Software from ETHZ has been used. It is based on year sets of hourly real weather values and it completely respects the dynamic behavior of rooms. It has been tested successfully against several precisely measured buildings in operation with less than 3% deviation from the measured values. An air leakage of n=0.3 h-1 has been taken into account.节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源
为了计算能量,我们使用了来自ETHZ的“气象表面”软件。这套软件是基于一年内每小时实际的气象值,它完全尊重室内的动态行为。通过与多座目前正在使用的建筑的正确测量值的对比测试,其偏差小于3%。考虑的空气置换率是0.3次/小时。
To derive the expression for the energy need for the air preparation, heating- and cooling degree days have been determined with real weather data of a year, based on 20 degree heating limit and 26 degree cooling limit. They have been corrected for the deviation of the standard heating degree days from the design value for Beijing. With this heating- and cooling degree days and an air related loss factor the energy consumption for heat and cold preparation was determined. A working number of 3 for the heat pump in heating and 2 for the heat pump in cooling was assumed.
为了计算空气制备所需的能量,采暖和制冷的天数取决于一年内实际的气象数据,基于200C的采暖界限和260C的制冷界限。这些数据对对北京的设计值中的标准采暖天数的偏差进行了修正。有了这些采暖和制冷天数以及与空气有关的损失因素,便可以确定采暖和制冷所需的能耗了
No interests and depreciations for the equipment have been taken into account.节能,建筑节能,绿色建筑,节能建筑,生态建筑,可持续建筑,建筑能耗,建筑能源没有考虑设备的增值和折旧
6.2.2 运行费用估算结果
按照5~10年里典型的北京气象条件,建筑如果能按照设计指标运行选择和施工,并按合理科学的方式进行使用,其运行费用的估算结果如表6.2.1所示:
回复