地下水文预测中BP网络的模型结构及算法探讨
lemonbird1986
2011年11月21日 09:23:10
只看楼主

论文简介: :本文探讨了人工神经网络中不同BP网络结构和算法在区域地下水文预测中的应用,实例比较了不同层次结构、学习速率、隐层单元数及不同算法等对收敛效果、模拟预报结果的影响。提出了一些BP模型的设计应用技术,即学习速率的取值范围与BP网络层数有一定关系,层数多,稳定区间较小,一般学习速率取值为0.01~0.1。快速BP算法从训练速度,收敛精度等方面均优于普通BP算法,可作为改进BP算法之一。在此基础上根据黄河河套灌区多年的水文、气象和地下水信息,对灌区多年的年地下水埋深变化进行了模拟,预测了河套灌区节水工程实施后未来灌区地下水位下降的趋势,为大型灌区节水工程改造与BP模型在区域地下水文中的应用提供了参考。

论文简介:

:本文探讨了人工神经网络中不同BP网络结构和算法在区域地下水文预测中的应用,实例比较了不同层次结构、学习速率、隐层单元数及不同算法等对收敛效果、模拟预报结果的影响。提出了一些BP模型的设计应用技术,即学习速率的取值范围与BP网络层数有一定关系,层数多,稳定区间较小,一般学习速率取值为0.01~0.1。快速BP算法从训练速度,收敛精度等方面均优于普通BP算法,可作为改进BP算法之一。在此基础上根据黄河河套灌区多年的水文、气象和地下水信息,对灌区多年的年地下水埋深变化进行了模拟,预测了河套灌区节水工程实施后未来灌区地下水位下降的趋势,为大型灌区节水工程改造与BP模型在区域地下水文中的应用提供了参考。



附件名:201111211321838590020.zip

文件大小:194K

(升级VIP 如何赚取土木币)
免费打赏

相关推荐

APP内打开