如题,TT系统,路灯照明配电箱,进线和出线是否均需要装四极开关!
如题,TT系统,路灯照明配电箱,进线和出线是否均需要装四极开关!
2楼
这个问题 好像真没什么定论,昨天刚看了王厚余先生关于四极开关的应用,只是说甚用,在TT系统中大多用四极开关。其中主要是指四极开关断N线带来的危害,和检修时的安全带来危险的争论
回复
3楼
给出祥细说明,给你加分.
回复
4楼
在检修期间,为了保障检修人员安全,在总进线处最好能采用四极开关。
回复
5楼
TT路灯照明系统是要四极开关,而且要带漏电保护,具体分析基于TN-S与TT的比较见下文:
一、道路照明采用TT系统的分析
TT系统是指将电气设备的金属外壳直接接地的保护系统,也称为保护接地系统。第一个符号“T”表示电力系统中性点直接接地;第二个符号“T”表示负载设备的金属外壳部分与大地直接连接,而与电源端接地无关(接地形式见图一)。道路照明采用TT系统时,金属灯杆(电器设备金属外壳)只与接地装置用导线连接,而与变压器的中性线不用导线接通。
当发生相线碰壳接地故障时,其等效电路图见图二。故障电流计算公式:Id=V/(R0+Rd+R相)
式中:V——电源电压;
Rd——灯杆接地电阻;
R0——变压器中性点接地电阻;
R相——相线阻抗(如短路点距电源很近,则R相可忽略不计)。
若R0=4Ω,Rd=4Ω(规程规定灯杆接地电阻不大于4Ω),则Id=220/(4+4)=27.5A。无法使熔断器在规定时间内动作。《低压配电设计规范》中规定,当要求切断故障回路的时间小于或等于5S时,短路电流Id与熔断器熔体额定电流In的比值不应小于表一的规定。这时设备外壳对地电压Upe=V×Rd/(R0+Rd+R相)。
则Upe=220×4/(4+4)=110V。由于短路点距电源较近,相线阻抗忽略不计,这个电压足以使触及的行人发生电击(国际电工委员会标准规定,人身电击安全电压限值为50V)。
而实际上现在很多城市采用保护接地时,一个路灯专用变压器供电的路灯灯杆有几十根,有的根根打接地极,有的隔杆打一根接地极,再用专门的PE线连成接地网络(接地形式见图三),这时Rd很容易小于1Ω,则Upe=220×1/(4+1)=44V<50V,为安全电压。
二、道路照明采用TN-S系统的分析
TN-S系统是把工作零线N和专用保护线PE严格分开的供电系统。第一个符号“T”表示电力系统中性点直接接地;第二个符号“N”表示负载采用接零保护;第三个符号“S”表示工作零线与保护线是严格分开的,所以PE线称为专用保护线,在电源端PE线必须与变压器中性点连接,如不连接则变成了TT系统,其接地形式见图四。当发生相线碰壳接地故障时,其等效电路图见图五。
Rd为重复接地电阻,《城市道路照明工程施工及验收规程》规定接地电阻不大于10Ω。如果相线与PE线规格一致,P点对中性点的电压为110V,则设备外壳对地电压Upe=110×Rd/(R0+Rd)=110×10/(10+4)=79V>50V,为危险电压。当重复接地装置比较多的情况下,R0和Rd值是接近的,实际测量中R0值稍小,假设均为4Ω,则Upe=110×Rd/(R0+Rd)=110×4/(4+4)=55V>50V,仍为危险电压。
存在危险电压不要紧,关键看能不能按照规范要求及时切断故障电压。短路电流Id=220/(R相+Rpe),假设一条路灯线路长600m,采用VV5×10电缆三相平衡控制,10mm2铜线电阻值每千米为2.06Ω,路灯档距在30m,灯位处电缆头长1.5m,箱变至第一灯位电缆长20m,其余余量均不计。每相控制7个250w高压钠灯,选用熔体额定电流30A的熔断器(往往考虑广告负荷熔芯还要高配)按照表一,Id应不小于150A。实际上Id=220/(0.68×2×2.06)=78.5A,不能及时切断。
为了满足及时切断故障,可加大电缆截面,但工程投资将成倍增加,如采用VV5×16电缆,Id=220/(0.68×2×1.288)=125A,还不能满足规范要求,得采用VV5×25的电缆,是极不经济的,而半径长600米的路灯线路在三相平衡供电中并不算长。
三、对TN-S和TT系统做相线碰壳短路试验
我们在黄海路西延道路照明工程中针对TN-S和TT系统分别做了相线碰壳短路试验,试验数据如下表。
从上表可以看出与前面的分析是吻合的,采用TN-S系统时故障点将存在危险电压,而短路电流的数值不足以及时切断电源,虽然触电的几率较小,但涉及到人身安全是不能存在任何侥幸心理的,而且电缆在施工中被灯杆法兰压破导致短路等相线碰壳故障在路灯中并不少见。
虽然增加电缆截面可以提高短路电流,但在资源越来越紧缺的情况下是很不经济的。在路灯的维护过程中还有这种情况,不负责的维修电工在熔芯烧坏后,找不出故障原因而是换用大容量的熔芯,由于故障未排除,危险电压始终存在。而采用TT系统,故障点对地电压容易得到安全电压,只要接地按照规范去做,即单根接地极用扁钢与灯杆法兰底板焊牢,所有接地用PE线连成网络,接地电阻小于1Ω是能做到的。唯一的问题是故障电流小,不能及时切断电源,导致线路带故障运行。正是由于此原因,《城市道路照明设计标准》指出TT系统应采用漏电保护器,我们也采用了RDL20-160型号的漏电保护器进行试验,整定电流为500mA,晴天还好,一旦遇到阴雨天,由于线路的泄流电流大而导致误动作。也许只有等市场上出现安培级的漏电开关供给,才能解决这个问题。
四、结语
1、道路照明采用TN-S系统,由于线路较长、负荷分散,短路电流不足以在规定时间内切断故障电流,尤其许多城市灯杆上安装灯箱广告后(政府行为),熔断器熔体容量还要高配,使得该矛盾更加突出,而此时故障点的危险电压足已危及人身安全(故障点周围的灯杆均带电)。
2、道路照明在接地良好,接地电阻达到1Ω以下时,宜采用TT系统,即使有相线碰壳故障也能确保故障点对地电压为安全电压。唯一不足的是线路很可能带故障运行,而目前市场上的漏电开关无法满足路灯稳定可靠运行,相信不久的将来,低电流的漏电开关研制成功,确保线路安全运行的问题就迎刃而解了。
3、公用变压器供电的路灯线路必须采用与供电一致的接地系统。如供电采用接零保护系统,而路灯线路单独采用TT系统,如发生碰壳故障时将造成该变压器下接零保护的其他用户用电设备外壳出现危险电压。《城市道路照明设计标准》中规定道路照明配电系统的接地形式宜采用TN-S系统或TT系统,明确了道路照明应采用的接地形式。由于路灯线路长,负荷分散、行人容易触及外露导体等特点,应通过具体分析计算、针对不同的接地形式选择配置正确参数的保护器件,才能确保安全,尤其是人身安全。
一、道路照明采用TT系统的分析
TT系统是指将电气设备的金属外壳直接接地的保护系统,也称为保护接地系统。第一个符号“T”表示电力系统中性点直接接地;第二个符号“T”表示负载设备的金属外壳部分与大地直接连接,而与电源端接地无关(接地形式见图一)。道路照明采用TT系统时,金属灯杆(电器设备金属外壳)只与接地装置用导线连接,而与变压器的中性线不用导线接通。
当发生相线碰壳接地故障时,其等效电路图见图二。故障电流计算公式:Id=V/(R0+Rd+R相)
式中:V——电源电压;
Rd——灯杆接地电阻;
R0——变压器中性点接地电阻;
R相——相线阻抗(如短路点距电源很近,则R相可忽略不计)。
若R0=4Ω,Rd=4Ω(规程规定灯杆接地电阻不大于4Ω),则Id=220/(4+4)=27.5A。无法使熔断器在规定时间内动作。《低压配电设计规范》中规定,当要求切断故障回路的时间小于或等于5S时,短路电流Id与熔断器熔体额定电流In的比值不应小于表一的规定。这时设备外壳对地电压Upe=V×Rd/(R0+Rd+R相)。
则Upe=220×4/(4+4)=110V。由于短路点距电源较近,相线阻抗忽略不计,这个电压足以使触及的行人发生电击(国际电工委员会标准规定,人身电击安全电压限值为50V)。
而实际上现在很多城市采用保护接地时,一个路灯专用变压器供电的路灯灯杆有几十根,有的根根打接地极,有的隔杆打一根接地极,再用专门的PE线连成接地网络(接地形式见图三),这时Rd很容易小于1Ω,则Upe=220×1/(4+1)=44V<50V,为安全电压。
二、道路照明采用TN-S系统的分析
TN-S系统是把工作零线N和专用保护线PE严格分开的供电系统。第一个符号“T”表示电力系统中性点直接接地;第二个符号“N”表示负载采用接零保护;第三个符号“S”表示工作零线与保护线是严格分开的,所以PE线称为专用保护线,在电源端PE线必须与变压器中性点连接,如不连接则变成了TT系统,其接地形式见图四。当发生相线碰壳接地故障时,其等效电路图见图五。
Rd为重复接地电阻,《城市道路照明工程施工及验收规程》规定接地电阻不大于10Ω。如果相线与PE线规格一致,P点对中性点的电压为110V,则设备外壳对地电压Upe=110×Rd/(R0+Rd)=110×10/(10+4)=79V>50V,为危险电压。当重复接地装置比较多的情况下,R0和Rd值是接近的,实际测量中R0值稍小,假设均为4Ω,则Upe=110×Rd/(R0+Rd)=110×4/(4+4)=55V>50V,仍为危险电压。
存在危险电压不要紧,关键看能不能按照规范要求及时切断故障电压。短路电流Id=220/(R相+Rpe),假设一条路灯线路长600m,采用VV5×10电缆三相平衡控制,10mm2铜线电阻值每千米为2.06Ω,路灯档距在30m,灯位处电缆头长1.5m,箱变至第一灯位电缆长20m,其余余量均不计。每相控制7个250w高压钠灯,选用熔体额定电流30A的熔断器(往往考虑广告负荷熔芯还要高配)按照表一,Id应不小于150A。实际上Id=220/(0.68×2×2.06)=78.5A,不能及时切断。
为了满足及时切断故障,可加大电缆截面,但工程投资将成倍增加,如采用VV5×16电缆,Id=220/(0.68×2×1.288)=125A,还不能满足规范要求,得采用VV5×25的电缆,是极不经济的,而半径长600米的路灯线路在三相平衡供电中并不算长。
三、对TN-S和TT系统做相线碰壳短路试验
我们在黄海路西延道路照明工程中针对TN-S和TT系统分别做了相线碰壳短路试验,试验数据如下表。
从上表可以看出与前面的分析是吻合的,采用TN-S系统时故障点将存在危险电压,而短路电流的数值不足以及时切断电源,虽然触电的几率较小,但涉及到人身安全是不能存在任何侥幸心理的,而且电缆在施工中被灯杆法兰压破导致短路等相线碰壳故障在路灯中并不少见。
虽然增加电缆截面可以提高短路电流,但在资源越来越紧缺的情况下是很不经济的。在路灯的维护过程中还有这种情况,不负责的维修电工在熔芯烧坏后,找不出故障原因而是换用大容量的熔芯,由于故障未排除,危险电压始终存在。而采用TT系统,故障点对地电压容易得到安全电压,只要接地按照规范去做,即单根接地极用扁钢与灯杆法兰底板焊牢,所有接地用PE线连成网络,接地电阻小于1Ω是能做到的。唯一的问题是故障电流小,不能及时切断电源,导致线路带故障运行。正是由于此原因,《城市道路照明设计标准》指出TT系统应采用漏电保护器,我们也采用了RDL20-160型号的漏电保护器进行试验,整定电流为500mA,晴天还好,一旦遇到阴雨天,由于线路的泄流电流大而导致误动作。也许只有等市场上出现安培级的漏电开关供给,才能解决这个问题。
四、结语
1、道路照明采用TN-S系统,由于线路较长、负荷分散,短路电流不足以在规定时间内切断故障电流,尤其许多城市灯杆上安装灯箱广告后(政府行为),熔断器熔体容量还要高配,使得该矛盾更加突出,而此时故障点的危险电压足已危及人身安全(故障点周围的灯杆均带电)。
2、道路照明在接地良好,接地电阻达到1Ω以下时,宜采用TT系统,即使有相线碰壳故障也能确保故障点对地电压为安全电压。唯一不足的是线路很可能带故障运行,而目前市场上的漏电开关无法满足路灯稳定可靠运行,相信不久的将来,低电流的漏电开关研制成功,确保线路安全运行的问题就迎刃而解了。
3、公用变压器供电的路灯线路必须采用与供电一致的接地系统。如供电采用接零保护系统,而路灯线路单独采用TT系统,如发生碰壳故障时
回复
6楼
5. TT 系统内电源进线开关应隔离中性线
上述IEC60364 - 4 - 46 第461. 2 条不隔离中性线的规定
未提TT系统,说明TT系统内应隔离中性线。英国IEE 标准
《电气安装规范》第461 - 01 - 03 条则规定TT系统(也包括IT
系统) 电气装置内的电气隔离应隔离所有带电导体,其中包
括中性线。这可用图2 来说明,图中的建筑物虽然做了总等
电位联结,但TT系统中的中性线与地绝缘而未与建筑物的
总等电位联结导通,它与地间存在故障电压引起的电位差
Uf ,此电位差将对电气检修人员构成电击危险。因此在TT
系统(也包括不常用的IT 系统) 建筑物内,必须在总电源进
线处和有需要的局部场所电源进线处,将中性线和相线同时
隔离。
图2 TT系统内中性线不隔离存在电击危险
由于我国较多采用TN 系统,如果按IEC 和IEE 标准的
规定,不在TN 系统建筑物内装用四极开关,只有TT 系统建
筑物内装用四极开关,则四极开关的装用可大大减少,这对
提高电气安全水平和节约建设投资都是有好处的。
21
工程建设与设计 2000 年第1 期 总第159 期
回复
7楼
分析的好,学习了啊
回复
8楼
回复
9楼
四极开关四极开关
回复
10楼
学习了,各位大侠牛~
回复
11楼
明白许多问题了!
回复