全站仪教程
ss5892303
ss5892303 Lv.2
2010年12月18日 15:13:37
只看楼主

论文简介: 很好 很强大 附件名:201012181292656417548.rar 文件大小:1260K (升级VIP 如何赚取土木币)

论文简介:

很好 很强大



附件名:201012181292656417548.rar

文件大小:1260K

(升级VIP 如何赚取土木币)

免费打赏
heyonghua218
2010年12月18日 16:30:31
2楼
程测量员-AutoCAD、全站仪和编程计算器在工程测量中的应用 [图片] 转载自 德州三把刀 2010年12月15日 09:03
字体:大▼ 小 中 大 转为日志 编辑 删除



一、引言
在工程测量中,内业资料计算占有很重要的比重,内业资料计算的准确无误与速度直接决定了测量工作是否能够快速、顺利地完成。而内业资料的计算方法及其所需达到的精度,则又直接取决于外业所用仪器及具体的放样目标和内业计算所用到的办公软件和计算方法。计算机辅助设计(Computer Aid Design 简写CAD,常称AutoCAD)是20世纪80年代初发展起来的一门新兴技术型应用软件。如今在各个领域均得到了普遍的应用。它大大提高了工程技术人员的工作效率。AutoCAD配合AutoLisp语言,还可以编制一些常用的计算程序,得到计算结果。AutoCAD的特性提供了测量内业资料计算的另外一种全新直观明了的图形计算方法。

结合我们现正使用的徕卡全站仪的情况,其可以很方便地进行三维坐标的测量,通过AutoCAD的内业计算,①、在放样的过程中,可以用编程计算器结合全站仪,非常方便地、快速地进行作业;②、运用AutoCAD进行计算结果的验证;③、随着全站仪的推广和普及,极坐标的放样越来越成为众多放样方法中备受测量人员青睐的一种,而坐标计算又是极坐标放样中的重点和难点,由于一般的红线放样,工程放样中的元素多为点、直线(段)、圆(弧)等,故可以充分利用AutoCAD的设定坐标系、绘图和取点的功能,以及结合我们外业所用计算器的功能,从而大大减轻我们外业的工作强度及内业的工作量。以下以冶勒电站厂区枢纽工程的一些实例来说明三者在工程测量中的应用。

二、测区概况

冶勒电站厂址位于石棉县李子坪乡南桠村,距坝址11KM,距石棉县城40KM。厂区枢纽工程主要包括通风洞、交通洞、出线洞、尾水洞及尾水明渠、主厂房、副厂房、安装间及压力管道、母线道、变电站等分部工程,地下洞长近1600米,涉及到两台(单机为12万kw)机组的安装定位。测量区域高程在海拔1990~2200米之间,高差起伏大,夜晚及洞内外作业温差较大,给测量作业带来了一定的困难。

三、AutoCAD的典型内业资料计算及管理

在测区内加密控制点,经常使用测角交会或测距交会或两者相结合的方法,如果我们运用数学公式来计算,则非常繁琐,而且不易检查错误,例如在后方交会中的危险圆上。相反,如果我们利用AutoCAD来绘图计算,就简单多了。现针对测角和测距两种方法分别作如下说明:

1、前方测角交会:

如图一所示,A、B为坐标已知的控制点,P为待求点,在A、B两点已观测了角度a和b。




我们就可以利用AutoCAD系统软件,根据A、B两点坐标在桌面绘制出A、B两个点,连接AB点得到AB线段,然后分别以A点和B点为基点旋转AB线段a,b角(从图上可直观地分辩方向)。使用ID命令选择交点P,就可以得出P点坐标了。如果图形有检校条件,仍然可以进行坐标差的计算。如果在近似平差的情况下能满足需要,则可以在图形上进行平均计算并作出标记。

2、前方距离交会:

如图二所示,A、B为坐标已知的控制点,P为待求点,在A、B两点已分别利用全站仪测了距离Sa和Sb。




我们就同样可以利用AutoCAD系统软件,根据A、B两点坐标绘制出A、B两个点,连接AB点得到AB线段,然后分别以A点和B点为圆心,以Sa和Sb为半径作圆,则得到P点和P’点(对照现场的方位情况,从图上可直观地分辩出其中一点P为所求,而另一点P’则是虚点,是我们不需要的)。使用ID命令选择交点P,就可以得出P点坐标了。在实际工作过程中,我们通常会将前方测角交会与前方距离交会进行组合应用,当然那就不一定要将所有条件都完成测量了。另外对于以上几项对坐标的应用,应该注意的就是AutoCAD中的坐标顺序与我们测量中的大地坐标系是有区别的,也就是要注意X坐标和Y坐标的对应关系。

3、对作业资料的管理:

AutoCAD在工程中除对测量内业资料计算有其优势一面,在外业资料的管理方面,同样有着非常广泛的应用。AutoCAD作为有名的工程系列应用软件平台,已经为广大工程技术人员所熟悉并掌握。在测量外业资料中,主要是控制点网略图及其计算资料的管理,另一方面是各种开挖横断面、纵断面图的绘制,以及横断面面积的计算,以及其它一些需要的图纸的绘制。由于AutoCAD已经有很强的数学计算功能和很高的数学精度,其有效位数已完全能够满足我们在工程测量中的需要了。在冶勒电站工作期间,我们就将所有图纸、所有工程量表格及文档进行分类,其重点是对图纸文件利用AutoCAD进行总图的绘制,在以后的工作中,就可以在总图上进行查找了。

4、应用实例:

现结合我们工作实际,作一些实际应用上的说明:我们承担了冶勒水电站厂区枢纽工程的施工测量工作,进场之际我们就建立了一级导线闭合环,观测资料经平差后,将坐标点的大地坐标输入AutoCAD平台,得到图三所示,以后随着工程的进行,我们陆续加密了一些支导线点,同样将坐标成果录入,这样从真正意义上,实现了坐标资料的数字化管理,这也方便了以后的坐标管理,同时也方便了以后在一些特殊情况下的图形应用。具体地讲就是,依据设计提供的结构关系,在图中设立足够的施工坐标系(以我们在外业放样中设站所需为准)并保存之。在以后的工程应用中,我们只需打开对应坐标系,利用ID命令点取我们需要的点,其对应坐标也就出来了。




下面举例给予说明:在尾水洞、尾闸室交叉段工程中,存在一个三直段夹两弧段的情形,如图四所示:




当时设计代表提供了如图示的图形尺寸关系,以及C点大地坐标和其以外段的大地方位角,尾闸室以内段的一些结构关系。如果单凭以往的经验和仪器条件,需要建立圆的方程,求解二元二次方程,才能求出圆弧对应圆心的大地坐标,之后才可进行下面的计算并结合仪器考虑放样方法。但是,我们将这个问题放到AutoCAD软件平台上来看,就变得非常简单了。具体操作如下:

先在AutoCAD软件平台上,依据C点大地坐标将C点录入,并依据过C点的直段洞轴线方位角及其长度绘出过C点的洞轴线,依据设代提供的尺寸关系,得到P1、P2点,然后利用AutoCAD绘制圆弧,使其分别过P1、C点和P2、C点,使之满足R=28.00米,并符合图形方向。再利用AutoCAD的标注功能,分别进行两段圆弧的圆心的标注O1、O2点,利用AutoCAD的ID命令就可以得到O1、O2点的大地坐标了。将之分别与P1、P2用直线段连接。考虑洞室的方向,再分别过P1、P2点作P1O1、P2O2的垂线P1X1、P2X2,利用AutoCAD方便的坐标系设置功能,分别建立以P1点、P2点为坐标系原点,P1X1、P2X2为X轴的测量施工坐标系然后再将其坐标系移到(0,-N)处并分别命名保存。到此,则我们的两个辅助施工坐标系建立完成,这两个坐标系保证了X轴与过P1(或P2)的圆弧相切(这一点将非常有利于我们下一步的全站仪与编程计算器的应用)。将我们测得的控制点的大地坐标输入图形中,直接就可以得到该控制点的相应的施工坐标和施工坐标方位角了。

四、全站仪和编程计算器在外业中的应用

我们目前使用的全站仪为瑞士产徕卡605L型全站仪,其本身已具备利用坐标进行工作的能力。对我们实际工作中的一些三维坐标的放样,就可以利用AutoCAD建立数字化模型,先用编程计算器在计算机AutoCAD平台上进行模拟检验,经检验程序正确后,再将之用于外业放样。对于露天点线,我们就可以尽量直接利用全站仪的坐标放样功能,将所需放样点的施工坐标输入全站仪,正确操作就可以得到正确的所需点位了。现在讨论的重点是针对地下工程中一些特殊情况下的点位放样。例如:地下厂房的开挖红线放样和有关结构点的放样,地下洞室的开挖红线放样,又特别是地下转弯段的开挖红线及其相关的一些结构点的放样。对地下厂房而言,其顶拱跨度大,主厂房达24.36m,其顶拱半径也有17m。在施工过程中,业主、监理、设代及施工四方均提出明确要求,要严格控制超挖,禁止欠挖,这就从放样方法上对我们测量人员提出了更高的要求。经过我们的反复比较,最后决定利用全站仪结合编程计算器,在现场进行三维的施工坐标的测量,再进行相关的计算,从而放出所需的红线点,事实证明,我们的方法是得当的、合理的,取得的效果也是较为理想的。下面分分两个方面来说明。

1、 无平面转弯情况下的计算:

如图五所示,其具体的编程思路如下:

首先,我们建立以B1B2机组中心线为E方向,垂直B1B2方向向下游的方向为N方向,以B1点坐标原点建立施工坐标系。




现假定我们要放顶拱的开挖红线,实测点P坐标为(E,N,H),则利用几何关系,可以计算其对应N坐标下的设计H坐标或对应H坐标下的设计N坐标,这就与我们实测坐标产生了H坐标差ΔH或N坐标差ΔN。则

ΔH1 =2036.368-17.00+√(17.00^2-(N+1.55)^2)-H

ΔL2=17.00-√((N+1.55)^2+(H-2019.368)^2)

ΔH3=2035.368-(15.36-√(15.36^2+(N+1.55)^2))-H

ΔL4=15.36-√((N+1.55)^2+(H-2020.008)^2)

ΔN=T×(N+1.55-T×√(17.00^2-(17.0-(2036.68-H))^2))

上述诸式中,ΔH1 、ΔL2分别为开挖红线的高程差值和径向方向上的差值,ΔH3、ΔL4分别为顶拱混凝土结构表面的高程差值和径向方向上的差值。

在ΔN式中:T=1,代表N≥-1.55,即厂房的下游侧;T=-1,代表N<-1.55 ,即厂房的上游侧(如图示,厂房中心线与机组中心线的平行距为1.55m。

ΔH为正,测点应上移ΔH距离即为红线,反之ΔH为负,测点应下移ΔH距离即为红线;

ΔN为正,测点应向靠近厂房中心线的方向移ΔN距离即为红线,反之ΔN为负,测点应向远离厂房中心线的方向移ΔN距离即为红线。同样,在厂房顶拱的混凝土衬砌的过程中,我们需要对顶拱的立模线进行放样和模板检查,其混凝土结构下边沿线半径为R=15.36米,有跨度大和难度大的重要特点。在模板的放样过程中,其情况与开挖红线放样又有一些不同点,我们没有将其作出相对厂房轴线的上下游之分,根据施工现场的实际情况看来,其只有铅垂方向的调整。在做模板检查时,相对来说,我们的作业环境将更加不利(有时可能无法通视),针对实际情况,我们一般采用将反光三棱镜高度保持某一定值或者者使用微棱镜,将其沿顶拱模板圆弧径向方向上放置,然后在计算时针对模板只有径向上的上下移动调整。在模板的放样及检查中,我们同样要利用编程计算器进行现场的计算,其计算原理类似于开挖红线放样的计算,只不过进行模板检查的计算时,其计算程序中的高程基准应以其混凝土结构面圆弧对应的圆心高程为基点,再结合其半径求其差值作调整。在AutoCAD软件平台上,可以非常方便地进行放样点坐标和模板点坐标的有效验证。即通过在AutoCAD应用平台上建立地下厂房的三维模型,在这个三维坐标系中,我们直接任意输入一个在厂房平面范围内的三维点坐标,从应用平台上可以直观地看到该点是否为红线或与红线或是否为模板点线的关系,同时我们用编程计算器对该输入三维点坐标进行计算,得出一个结论,就可以作为互相验证的依据了。

针对冶勒电站的情况及其在地下洞室设计上的要求,一般都有一定的坡度以利排水等,传统的洞室开挖放样是在洞外或已开挖段布设基本导线,然后运用经纬仪和水准仪、钢尺的配合,在掌子面上寻出开挖断面圆心、中心线、腰线等。这种传统的作业方法在实际操作过程中很不易操作,而且误差较大,也易出错。一般情况下,掌子面不会是一个标准的铅垂面,而通常隧洞都具有一定的坡度,有时甚至坡度很大,这时应该先考虑将非铅垂面的设计开挖(结构)线进行相关的转换,具体操作可在AutoCAD软件平台上进行,也可直接在编程计算器上进行。如通风联系洞,坡度达0.3039。其设计开挖顶拱为圆弧,而在铅垂面则为椭圆弧了,则我们可以利用AutoCAD软件平台建立其纵横断面的空间模型,求出该椭圆弧的长、短半轴,从而得到其对应的椭圆方程,再利用编程计算器编写相应的程序,之后在AutoCAD软件平台进行验证,结果符合良好。这样就可以充分避免一些特殊情况下易造成的欠挖(如,掌子面不平整等)。

2、有平面转弯情况下的计算:

而对稍复杂一点的情况,如通风洞转弯段、尾水洞三叉口段,在开挖过程中,掌子面根本没法保证是同桩号,及砼衬砌过程中为保证各仓号端面均为同桩号,则必须利用编程计算器在现场施工坐标系间坐标转换的计算。对于地下洞室的转弯段,则主要应考虑其施工坐标的平面转换,假如要采用一些传统的放曲线的方法,众所周知,由于地下通视不好,则很可能是没办法放样的,而利用全站仪结合编程计算器,进行一些优化后的施工坐标的测量,则变得容易多了。从冶勒水电站厂区枢纽工程的施工情况来看,运用上述组合方法,能够较好地控制超挖和保证开挖效果。

参见图四,以尾水洞转弯段为例:通过前述的坐标设站,待测得坐标点,应用编程计算器将之转化成洞轴线(曲线)上的坐标,再以之进行相关对应断面的高程和平面坐标的计算。其具体的编程思路如下(以P1C段为例):

利用解析几何的关系,求出O1P点的平面距离SO1P,则E’=28.00-SO1P。计算出O1P1,O1P的夹角,则可以得到N’,再以E’、N’代入洞挖空间模型计算程序中,计算出高程位移ΔH和平面位移ΔE就可以了。其程序关键式如下:

Q=atan((L-37.35)÷(28-D))

N=37.35+Q×π÷180×28

E=28-√((28-D)^2+(L-37.35)^2)

I=2002.86+(343.947-N) ×.003-(3.2-√(3.2^2-E^2))-H

J=1999.66+(343.947-N) ×.003+√(2.8^2-E^2)-H

上述诸式中,直接的数据为设计提供的图形尺寸,L、D为我们对纵、横坐标的观测值,N、E为我们根据曲线关系计算而得的纵、横坐标值,I、J为我们以所测点高程对应根据设计断面图形计算的顶拱开挖和顶拱结构混凝土表面高程的差值,即ΔH。而ΔE就应以所计算的E与设计值进行比较而得,这里就不再赘述了。

五、结束语

针对地下洞室的施工环境,如果能够运用更先进的,具有无标志测距,红外线导向功能的全站仪,如TCRA1100系列全站仪配合TMS断面测量系统后处理软件。目前较为先进的多功能全站仪断面测量系统是专为地下工程施工测量中断面测量及炮孔测设而研制开发的软硬件结合的自动化系统,它就充分利用了徕卡TCRA型全站仪的激光无棱镜测距和马达驱动等功能,实现了断面测量野外数据采集软件控制和自动采集,从而达到在地下洞室断面测量的自动化、数据化及计算机化。这套系统组合的优点是:采用最新无反射棱镜技术和伺服马达技术,全自动完成断面测量、围岩变形测量、炮孔定位、容积测量等多项工作,真正做到一机多用、功能强大、品质卓越、经济实用。它们将可以更好地减轻测量人员的外业劳动强度,更好地提高测量作业效率和作业精度,但是随着更先进仪器的投入,必然存在成本的增加,对我们测量人员的能力要求必然也将更高。有理由相信,随着全站仪开发技术的提高和工程技术人员素质的提高,作为施工测量必将拥有更加广阔的发展空间。

转载自:工程测量员-AutoCAD、全站仪和编程计算器在工程测量中的应用
回复
heyonghua218
2010年12月18日 16:33:50
3楼
用全站仪进行工程测量----1
(九)悬高测量( REM ) *
  为了得到不能放置棱镜的目标点高度,只须将棱镜架设于目标点所在铅垂线上的任一点,然后测量出目标点高度 VD 。悬高测量可以采用“输入棱镜高”和“不输入棱镜高”两种方法。


  1、输入棱镜高
  (1)按 MENU —— P1 ↓—— F1(程序)—— F1(悬高测量)—— F1(输入棱镜高),如:1.3m 。
  (2)照准棱镜,按测量( F1 ),显示仪器至棱镜间的平距 HD —— SET (设置)。
  (3)照准高处的目标点,仪器显示的 VD ,即 目标点的高度。
  2、不输入棱镜高
  (1)按 MENU —— P1 ↓—— F1(程序)—— F1(悬高测量)—— F2(不输入棱镜高 )。
  (2)照准棱镜,按测量( F1 ),显示仪器至棱镜间的平距 HD —— SET (设置)。
  (3)照准地面点 G ,按 SET (设置)
  (4)照准高处的目标点,仪器显示的 VD ,即 目标点的高度。
(十)对边测量( MLM ) *
   对边测量功能,即测量两个目标棱镜之间的水平距离( dHD )、斜距 (dSD) 、高差 (dVD) 和水平角 (HR) 。也可以调用坐标数据文件进行计算。对边测量 MLM 有两个功能,即:
   MLM-1 (A-B ,A-C):即测量 A-B ,A-C ,A-D ,…和 MLM-2 (A-B ,B-C):即测量A-B, B-C ,C-D ,…。
   以 MLM-1 ( A-B ,A-C )为例,其按键顺序是:
   1、按 MENU —— P1 ↓——程序( F1 )——对边测量( F2 )——不使用文件( F2 )—— F2 (不使用格网因子)或 F1 (使用格网因子)—— MLM-1 ( A-B , A-C )( F1 )。
   2、照准 A 点的棱镜,按测量(F1),显示仪器至 A 点的平距 HD —— SET (设置)
   3、照准 B 点的棱镜,按测量(F1),显示 A 与 B 点间的平距 dHD 和高差 dVD 。
   4、照准 C 点的棱镜,按测量(F1),显示 A 与 C 点间的平距 dHD 和高差 dVD …,按 ◢ ,可显示斜距。
(十一)后方交会法( resection )(全站仪自由设站) *
   全站仪后方交会法,即在任意位置安置全站仪,通过对几个已知点的观测,得到测站点的坐标。其分为距离后方交会(观测 2 个或更多的已知点)和角度后方交会(观测 3 个或更多的已知点)。
   其按键步骤是:
   1、按 MENU —— LAYOUT (放样)( F2 )—— SKIP (略过)—— P↓(翻页)( F4 )—— P↓(翻页)( F4 )—— NEW POINT(新点)( F2 )—— RESECTION (后方交会法)( F2 )。
   2、按 INPUT (F1),输入测站点的点号—— ENT (回车)—— INPUT (F1),输入测站的仪器高—— ENT (回车)。
   3、按 NEZ(坐标)(F3),输入已知点 A 的坐标—— INPUT (F1),输入点 A 的棱镜高。
   4、照准 A 点,按 F4 (距离后方交会)或 F3 (角度后方交会)。
   5、重复 3 、4 两步,,观测完所有已知点,按 CALA (计算)( F4 ),显示标准差,再按 NEZ (坐标)( F4 ),显示测站点的坐标。
第二章 高等级公路中桩边桩坐标计算方法
一、平面坐标系间的坐标转换公式
   如图 9 ,设有平面坐标系 xoy 和 x'o'y' (左手系—— x 、 x' 轴正向顺时针旋转 90°为 y 、 y' 轴正向); x 轴与 x' 轴间的夹角为θ( x 轴正向顺时针旋转至 x' 轴正向,θ范围: 0° — 360°)。设 o' 点在 xoy 坐标系中的坐标为( xo',yo' ),则任一点 P 在 xoy 坐标系中的坐标( x,y )与其在 x'o'y' 坐标系中的坐标( x',y' )的关系式为:
二、公路中桩边桩统一坐标的计算
(一)引言
   传统的公路中桩测设,常以设计的交点( JD )为线路控制,用转点延长法放样直线段,用切线支距法或偏角法放样曲线段;边桩测设则是根据横断面图上左、右边桩距中桩的距离( 、 ), 在实地沿横断面方向进行丈量。随着高等级公路特别是高速公路建设的兴起,公路施工精度要求的提高以及全站仪、 GPS 等先进仪器的出现,这种传统方法由于存在放样精度低、自动化程度低、现场测设不灵活(出现虚交,处理麻烦)等缺点,已越来越不能满足现代公路建设的需要, 遵照《测绘法》的有关规定,大中型建设工程项目的坐标系统应与国家坐标系统一致或与国家坐标系统相联系,故公路工程一般用光电导线或 GPS 测量方法建立线路统一坐标系,根据控制点坐标和中边桩坐标,用“极坐标法”测设出各中边桩。如何根据设计的线路交点( JD )的坐标和曲线元素,计算出各中边桩在统一坐标系中的坐标,是本文要探讨的问题。
(二)中桩坐标计算
   任何复杂的公路平面线形都是由直线、缓和曲线、圆曲线几个基本线形单元组成的。一般情况下在线路拐弯时多采用“完整对称曲线”,所谓“完整”指第一缓和曲线和第二缓和曲线的起点( ZH 或 HZ )处的半径为 ∞ ;所谓“对称”指第一缓和曲线长 和第二缓和曲线长 相等。但在山区高速公路和互通立交匝道线形设计中,经常会出现“非完整非对称曲线”。根据各个局部坐标系与线路统一坐标系的相互关系,可将各个局部坐标统一起来。下面分别叙述其实现过程。
  1、直线上点的坐标计算
   如图 10 a) b) 所示,设 xoy 为线路统一坐标系, x'-ZH-y' 为缓和曲线按切线支距法建立的局部坐标系,则 JDi-1—JDi 直线段上任一中桩 P 的坐标为:
   ( 1 )   式( 1 )中( , )为交点 JDi-1 的设计坐标; , 分别为 P 点、 JDi-1 点的设计里程; 为 JD i-1 ~JD i 坐标方位角,可由坐标反算而得。
   曲线起点(ZH 或 ZY),曲线终点(HZ 或 YZ)均是直线上点,其坐标可按式(1)来计算。
   2、完整曲线上点的坐标计算
   如图 10 a ) ,某公路曲线由完整的第一缓和曲线 、半径为 R 的圆曲线、完整的第二缓和曲线 组成。
   (1)第一缓和曲线及圆曲线上点的坐标计算
   当 K 点位于第一缓和曲线( ZH—HY )上,按切线支距法公式有:
   ( 2 )   当 K 点位于圆曲线( HY—YH )上,有 :
   ( 3 )其中有:    ( 4 )   式( 2 )( 3 )( 4 )中, 为切线角; 为 K 点至 ZH i 点的设计里程之差,即曲线长; R 、 、 、 p 、 q 为常量,分别表示圆曲线半径,第一缓和曲线长、缓和曲线角( )、内移值( )、切线增值( )。
   再由坐标系变换公式可得:
   ( 5 )   式( 5 )中 f 为符号函数,右转取“ + ”,左转取“ - ”(见图 1 b ))。
图 10 a)直线第一缓和曲线圆曲线段点坐标计算(右转) 图 10 b)直线第一缓和曲线圆曲线段点坐标计算(左转)
   (2)第二缓和曲线上点的坐标计算
   如图 12 所示,当 M 点位于第二缓和曲线( YH—HZ )上,有:
   ( 6 )   式( 6 )中, ,为 M 点至 HZ 点的曲线长; R 为圆曲线半径, 为第二缓和曲线长。
   再由坐标系变换公式可得:
   ( 7 )   式( 7 )中 f 为符号函数,线路右转时取“ - ”,左转取“ + ”。
   (3)单圆曲线(ZY—YZ)上点的坐标计算
   单圆曲线可看作是带缓和曲线圆曲线的特例,即缓和曲线段长为零。令式( 3 )( 4 )中内移值 p 、切线增长 q 、第一缓和曲线长 、缓和曲线角 为零,计算出单圆曲线上各点的局部坐标后,由式( 5 )可得 ZY~YZ 上各点的统一坐标。
  图 12 第二缓和曲线段点坐标计算(右转)    图 13 非完整缓和曲线段点坐标计算(右转)
  3、非完整曲线上点的坐标计算
  如图 13 所示,设非完整缓和曲线起点 Q 的坐标为( , ),桩号 ,曲率半径 ,切线沿前进方向的坐标方位角为 ;其终点 Z 的桩号 ,曲率半径 ,则 Z 点至 Q 点曲线长 。若 > ,则该曲线可看成是曲率半径由 ∞ 到 的缓和曲线去掉曲率半径由 ∞ 到 后的剩余部分。设 N 点为该曲线上一点, N 点至 Q 点的曲线长为 ; O 为对应完整缓和曲线的起点, Q 点至 O 点的曲线长为 ,则由回旋型缓和曲线上任一点曲率半径与曲线长成正比的性质,有:
      
    得:               ( 8 )
  设 ,则由缓和曲线的切线角公式及偏角法计算公式知:
                  ( 9 )
             ( 10 )
               ( 11 )
      由图 13 知:
                ( 12 )
  则直线 QO 的坐标方位角为:
             ( 13 )
  O点切线方向 轴的坐标方位角 为:
                   ( 14 )
  式( 13 )( 14 )中, f 为符号函数,线路右转时,取“ - ”;线路左转时,取“ + ”。
  故 O 点坐标( )为:
   ( 15 )  将式(14)、(15)代入坐标平移旋转公式,得任一点 N 的坐标为:
   ( 16 )  式( 16 )中,( , )按式( 2 )计算,代入时 用( )替代; f 为符号函数,右转取“ + ”左转取“ - ”。
(三)边桩坐标计算
   有了中桩坐标( x,y )及其至左、右边桩的距离 d L 、 d R 后,计算出中桩至左、右边桩的坐标方位角 AZ-L 、 AZ-R ,则由式( 17 )、( 18 )得左、右边桩坐标( , )、( , )。
   ( 17 )   ( 18 )   1、直线上点 AZ-L 、 AZ-R 的计算
   从图 10 a ) b )知:
     ( 19 )   2、第一缓和曲线及圆曲线段点 AZ-L 、 AZ-R 的计算
   如图 10 a ) b )所示,有:
   ( 20 )   式( 20 )中,当 K 点位于第一缓和曲线上, 按式( 9 )计算;当 K 点位于圆曲线段,按式( 4 )计算。 f 为符号函数,右转取“ + ”,左转取“ - ”。
   3、第二缓和曲线段点AZ-L 、 AZ-R 的计算
   如图 12 所示,有:
   ( 21 )  式( 21 )中, 按式 计算; f 为符号函数,右转取“ - ”,左转取“ + ”。
(四)算例
   如图 13 设某高速公路立交匝道 ( 右转 ) 的非完整缓和曲线段起点 Q 的桩号 K8+249.527 ,曲率半径 R Q = 5400m ,切线沿前进方向的坐标方位角 , 坐标为( 91412.164 , 79684.008 );终点 Z 桩号 K8+329.527 ,曲率半径 R Z = 1800m 。中桩 K8+309.527 到左、右边桩的距离 d L = 18.75m , d R = 26.50m ,试计算 K8+309.527 的中、边桩坐标。
   1、完整缓和曲线起点 O 的计算
  由公式( 8 ) —( 15 )计算得: , , , , , , , 。
  2、中桩坐标的计算
   由式( 2 )( 14 )( 16 )计算得: m , m ; 轴的坐标方位角 ; , 。
  3、边桩统一坐标的计算
   由式( 9 )( 20 )得: , ,
式( 20 )中 Ai-1-i 即 轴的坐标方位角 。再由式( 17 )( 18 )得 , ; , 。
(五)小结
   通过坐标转换的方法,在传统测设的各个局部坐标系与线路统一坐标系间建立了纽带,通过编程能实现各个中桩边桩坐标的同步计算。对于复曲线、回头曲线、喇叭形立交、水滴形立交等复杂线形,可将其分解成直线、非完整非对称缓和曲线、圆曲线形式,再按文中的方法进行计算。
   用线路统一坐标进行放样,测设灵活方便,不必在实地标定交点( JD )位置,这对于交点位于人无法到达的地方(如山峰、深谷、河流、建筑物内),是十分方便的。应用中,以桩号 L 为引数,建立包括中桩、边桩、控制点在内的坐标数据文件。将坐标数据文件导入全站仪或 GPS 接收机,应用坐标放样功能,便可实现中、边桩的同时放样。特别是 GPS 的 RTK 技术出现后,无需点间通视,大大提高了坐标放样的工作效率,可基本达到中、边桩放样的自动化。
回复
heyonghua218
2010年12月18日 16:36:23
4楼
全站仪进行工程测量---2一生有你
第三章 建筑施工点位坐标计算及放样方法
一、平面坐标系间的坐标转换公式
如图 14 ,设有平面坐标系 xoy 和 x'o'y' (左手系—— x 、 x' 轴正向顺时针旋转 90°为 y 、 y' 轴正向); x 轴与 x' 轴间的夹角为θ( x 轴正向顺时针旋转至 x' 轴正向,θ范围: 0°— 360°)。设 o' 点在 xoy 坐标系中的坐标为( xo',yo' ),则任一点 P 在 xoy 坐标系中的坐标( x,y )与其在 x'o'y' 坐标系中的坐标( x',y' )的关系式为:

在建筑施工中,上面的平面坐标系 xoy 一般多为城市坐标系,平面坐标系 x'o'y' 一般多为建筑施工坐标系 AOB ;若 xoy 、 x'o'y' 均为左手系,则用上式进行转换;但有时建筑施工坐标系 AOB 会出现右手系—— x' ( A )轴正向逆时针旋转 90°为 y' ( B )轴正向。此时,应注意上面的计算公式变为:
二、建筑基线测设及角桩定位
如图 15 ,选择 100m × 35m 的一个开阔场地作为实验场地, 先在地面上定出水平距离为 55.868m 的两点,将其定义为城建局提供的已知导线点 A5 、 A6 ,其中 A5 同时兼作水准点。

图 15 基线测设及角桩定位图1、“ T”形建筑基线的测设
(1)根据建筑基线 M、O、N、P 四点的设计坐标和导线点 A5 、 A6 坐标,用极坐标法进行测设,并打上木桩。已知各点在城市坐标系中的坐标如下:
A5(2002.226,1006.781,20.27) , A6(2004.716,1062.593) , M(1998.090,996.815) , O(1996.275,1042.726) , N(1994.410,1089.904) , P(1973.085,1041.808) 。
(2)测量改正后的 (3)在 O 点用正倒镜分中法,拨角 90°,并放样距离 OP ,在木桩上定出 P 点的位置。
(4)测量 2、根据导线进行建筑物的定位
设图中 NOP 构成的是建筑施工坐标系 AOB ,并设待建建筑物 F2 在以 O 点原点的建筑施工坐标系 AOB 中的坐标分别为 1# ( 3 , 2 )、 2# ( 3 , 17 )、 3# ( 23 , 17 )、 4# ( 23 , 2 ),且已知建筑坐标系原点 O 在城市坐标系中的坐标为 O ( 1996.275 , 1042.726 ), OA 轴的坐标方位角为, 试计算出 1# 、 2# 、 3# 、 4# 点在城市坐标系中的坐标,并在在 A6 测站,后视 A5 ,用极坐标法放样出 F2 的 1# 、 2# 、 3# 、 4# 四个角桩。并以 A5 高程( 20.47m )为起算数据,用全站仪测出 F2 的 1# 、 2# 、 3# 、 4# 四个角桩的填挖深度。( F2 的地坪高程为 20.50m )。
参考答案: F2 的 4 个角桩的设计坐标分别如下:
1#( 1994.158,1045.644 )、 2#( 1979.170,1045.051 )、 3#( 1978.378,1065.035 )、 4# ( 1993.366,1065.629 )
检查 1—2 个角桩的水平角与 90° 的差是否小于,距离与设计值之差的相对误差不得大于 1/3000 。
3、根据建筑基线进行建筑物的定位 *
根据图中的待建建筑物 F1 与建筑基线的关系,利用建筑基线,用直角坐标法放样出 F1 的 1# 、 2# 、 3# 、 4# 四个角桩。检查 1—2 个角桩的水平角与 90°的差是否小于,距离与设计值之差的相对误差不得大于 1/3000。
三、圆曲线中桩测设的局部极坐标法
如图 16 所示,用局部极坐标法测设圆曲线中桩的方法是:
(1)以圆曲线起点 ZY 为原点,切线指向交点 JD 为 x 轴正向,再顺时针旋转 90°为 y 轴正向,建立切线支距法坐标系。
(2)用切线支距法同样的方法求出各中桩 P 在该坐标系中的坐标。( 注意 y 坐标的正负符号。 )

其中有:
(3)在 ZY 点架仪,输入测站点坐标( 0 , 0 ),后视 x 轴正向,输入方位角,测出一任意点 ZD 在该坐标系中的坐标。
(4)在 ZD 点设站,后视 ZY 点,根据各中桩 P 的坐标用全站仪坐标放样功能,放样出各中桩。若使用经纬仪,则可先用坐标反算公式,求出 P 点至 ZD 点的距离 D 及转角 δ (方位角之差),再进行拨角、量边。
第四章 CASIO FX-4800P 程序
一、缓和曲线切线支距法程序
1、程序名:HUAN QIE (缓切)
2、用途
该程序是“完整对称带缓和曲线的圆曲线”的切线支距法详细测设坐标计算程序。
3、程序数学模型
按切线支距法建立的缓和曲线局部坐标系。即以曲线起点或终点为坐标原点,切线方向为 X 轴正向,圆心方向为 Y 轴正向。
4、程序清单
A “ ZH ”: R : S “ LS ”: Lbl 1 ↙
{L , B} ↙
:↙
Lbl 2 ↙
C=Abs(L-A) : D=RS : X=C-C^5 ÷ 40D 2 +C^9 ÷ 3456D^4-C^13 ÷ 599040D^6+C^17 ÷ 17542600D^8 ◢
Y=C^3 ÷ 6D-C^7 ÷ 336D^3+C^11 ÷ 42240D^5-C^15 ÷ 9676800D^7+C^19 ÷ 3530097000D^9 ◢ Goto 1 ↙
Lbl 3 ↙
E=180(Abs(L-A)-S) ÷ R ÷π +180S ÷ (2 π R) : P=S 2 ÷ 24 ÷ R-S^4 ÷ 2688 ÷ R^3 :Q=S ÷ 2-S^3 ÷ 240 ÷ R 2 ↙
X=RsinE+Q ◢
Y=R-RcosE+P ◢
Goto 1 ↙
5、程序说明
ZH —— ZH 点桩号(里程); R ——圆曲线半径; LS ——缓和曲线长; L ——待测设桩的桩号(里程); B ——当待测设中桩位于缓和曲线段,则输入“ 1 ” ,当待测设中桩位于圆曲线段,则输入“ 1 ” 以外的数值。 X ——切线支距法的 X 值; Y ——切线支距法的 Y 值。
二、平面坐标转换程序
1、程序名: ZHUAN HUAN (转换)
2、用途
该程序是“两平面坐标系间坐标转换”的计算程序。
3、程序数学模型
根据图 14 的平面坐标系间坐标转换的平移旋转公式,进行计算,即有公式:

4、程序清单:
C“X0”: E“Y0”:D“ANGLE”: F“SIGN” ↙
Lbl 0 ↙
{A , B} ↙
F1A=A : B=-B Δ X=C+AcosD-BsinD ◢
Y=E+BcosD+AsinD ◢
Goto 0
5、程序说明:
X0 ,Y0 ——施工坐标系( A-O'-B )的原点 O' 在统一坐标系( x-o-y )中的坐标。
ANGLE ——为统一坐标系的 x 轴顺时针旋转至施工坐标系的 A 轴的角值。
SIGN ——为符号函数,若输入“ 1 ” 时,则表明 x-o-y 为左手系,且 A-O'-B 也为左手系;若输入“ 1 ” 之外值,则表明 x-o-y 为左手系,而 A-O'-B 为右手系。
A , B ——某点在施工坐标系中的纵、横坐标。
X , Y ——该点在相应统一坐标系中的纵、横坐标。
第五章 理论与实操习题集
一、理论习题
说明:请路桥类学生完成第 1 、 4 题,请建工类学生完成第 2 、 3 、 4 题。
1、在左转的带缓和曲线的圆曲线中桩测设中,设起点 ZH 桩号为 K5+219.63 ,其坐标为( 31574.163,62571.446 ),其切线方位角为,缓和曲线长为 120m ,圆曲线的半径为 1000m ,试计算:
(1)直线上中桩 K5+160 、 K5+180 、 K5+200 的坐标。
(2)缓和曲线上中桩 K5+260 、 K5+280 、 K5+300 的坐标。
(3)圆曲线上中桩 K5+340 、 K5+360 、 K5+380 的坐标。
(4)若将题目的“左转”改为“右转”,试计算直线上中桩 K5+180 、缓和曲线上中桩 K5+300 、圆曲线上中桩 K5+340 的坐标。
部分参考答案:
左转时,有:
K5+180 : x=31551.259 , y=62603.787
K5+300 : x'=80.36417853 , y'=0.7209861767 , x=31620.020 , y=62505.446 。
K5+340 : x'=120.3261366 , y'=2.421637931 , x=31641.728 , y=62471.850 。
2、如图 16 ,已知单圆曲线的半径 R= 300m ,交点的里程为 K3+182.76 ,转角,试计算出里程为 K3+120 、 K3+130 、 K3+140 三个中桩的切线支距法坐标。
3、完成此教材 P26-P27 的“ 建筑基线测设及角桩定位”中角桩的坐标计算及实地测设方法。
4、用 CASIO fx-4800P 或 CASIO fx-4500PA 编程计算器编制程序,使其实现以上计算功能。
二、实操习题
1、 输入棱镜常数 PSM 为 -30mm ,气温 T 为 35°C ,气压 P 为 760mmHg 。
2、将倾斜改正的 X 、 Y 均打开。
3、将竖盘读数 V 的显示由目前的“望远镜水平时盘左为 90°” 改为“望远镜水平时盘左为 0°” (即显示的 V 直接为竖直角。)
4、将测量模式由目前的“精测( Fine )”改为“粗测( coarse )”,再改回“精测”。
5、将距离单位由目前的“米”改为“英尺”,再改回“米”。
6、在地面上任取 2 个点,为 A 和 B ,在 B 点架全站仪,后视地面上任一点 A ,用“距离放样方式( S.O )”在 BA 直线上找到一点,使其与 B 点的距离等于 23.115m 。
7、在地面点上任意选 3 个点,分别为 D1 、 D2 、 D3 ,在 D2 架仪,后视 D1 ,用“测角模式”中的“盘左盘右取平均的方法”(测回法),测出所夹的水平角。然后在“距离测量模式”中,测出 D2 至 D3 的水平距离。
8、在地面点上任意选 3 个点,分别为 D1 、 D2 、 D3 ,在 D2 架仪,后视 D1 ,设 D2 的三维坐标为( 1367.357 , 2568.854 , 58.348 ), D2 至 D1 的坐标方位角为,用盘左测出 D3 点的三维坐标。
9、在地面上任取 2 个点,为 A 和 B ,在 B 点架全站仪,后视地面上任一点 A ,设 B 点的平面坐标为(3458.129 , 9761.275 ),坐标方位角,用“偏心测量方式(OFSET)”,测出一棵树中心的平面坐标。
10、在地面上任取 2 个点,为 A 和 B ,在 B 点架全站仪,后视 A 点,设 B 点三维坐标为( 1035.447,3316.815,52.617 ),坐标方位角, D 点的三维坐标为( 1038.000,3307.509 , 52.505 ),试放样出点 D 的平面位置及需填挖的深度。
11、利用全站仪“面积测量”功能,测出地面上一个花池的平面面积。
12、利用全站仪的“悬高测量”功能,测出某一栋建筑物的高度。
13、利用全站仪的“对边测量”功能,测出地面上两点间的距离、高差。
14、用全站仪的“坐标输入”( COORD.INPUT )功能,在全站仪上建立一个“坐标数据文件”,文件名为“ ZBSJWJ1 ”。输入文件的内容为: D1 ( 209.232,100.199, 12.551 )、 D2 ( 200.736,100.458, 10.458 )、 D3 ( 189.345,120.441,11.512 )、 K0+000 ( 207.334,105.465, 10.700 )、 K0+020 ( 212.521,111.664, 10.700 )、 K0+040 ( 214.629,117.384, 10.900 )、 K0+060 ( 218.542,122.442, 10.900 )、 K0+080 ( 224.331,129.214, 11.200 )、 K0+100 ( 230.615,132.671, 11.400 )、 K0+120 ( 235.986,133.900, 11.400 )、 K0+140 ( 240.333,138.262, 11.500 )、 K0+160 ( 245.326,140.341, 11.500 )。
15、在电脑上利用 TOPCON 通讯软件“ T-COM ”,将内容为: D1 ( 209.232,100.199, 12.551 )、 D2 ( 200.736,100.458, 10.458 )、 D3 ( 189.345,120.441,11.512 )、 K0+000 ( 207.334,105.465, 10.700 )、 K0+020 ( 212.521,111.664, 10.700 )、 K0+040 ( 214.629,117.384, 10.900 )、 K0+060 ( 218.542,122.442, 10.900 )、 K0+080 ( 224.331,129.214, 11.200 )、 K0+100 ( 230.615,132.671, 11.400 )、 K0+120 ( 235.986,133.900, 11.400 )、 K0+140 ( 240.333,138.262, 11.500 )、 K0+160 ( 245.326,140.341, 11.500 )的坐标数据文件上传至全站仪,文件名为“ ZBSJWJ2 ”。


订阅到阅读空间
回复
chonglangban
2015年10月21日 13:50:46
5楼
我有疑问,要是前方角度交汇的话,是测量两个角度,已知一边,然后cad放点得到坐标。
这个角度是正反镜得到的角度是吧?
可是,用全站仪器的话,不是可以直接得到两个P点的坐标么,用平均值不可以么。因为坐标是正镜测得,倒镜没有呢,不知道准不准,

计算的话,cad能有多强的位数控制?角度能到秒的?
回复

相关推荐

APP内打开