城镇超高压天然气管线工程设计中几个重点问题的研究
yanyan20332033
2010年09月07日 11:37:52
只看楼主

城镇超高压天然气管线工程设计中几个重点问题的研究    1引言北京市引进陕甘宁天然气市内工程中公路一环Dn700天然气管线的设计压力已达2.5MPa。超高压燃气管道设计(>1.6MPa),不同于一般的高压燃气管道设计。《城镇燃气设计规范》规定,敷设设计压力大于1.6MPa的燃气管道时,其设计应按现行的《输气管道工程设计规范》执行。而《输气管道工程设计规范》以油、气田至目的地的长输管线为主要对象,其中涉及到的厂站也以油、气田厂、站建设为主,不适用于城镇燃气输配系统中的管线和厂、站建设。那么在城镇敷设超高压燃气管道时,其设计应如何执行《城镇燃气设计规范》及《输气管道工程设计规范》并将它们有机地结合起来就成为一个现实问题。随着国内天然气事业的发展,城镇天然气输配系统的设计规模也越来越大,为了保证项目的经济性和可实施性,势必要提高输配系统的设计压力。目前,北京市由我院设计并已经敷设的超高压天然气管线已接近200Km,还有几十公里的超高压管线正在敷设之中。下面结合我院所做的公路一环Dn700天然气管线工程的设计和实施情况,就城镇超高压天然气管线工程设计中的几个重点问题进行研究和总结,以利于更进一步提高工程的设计质量。

城镇超高压天然气管线工程设计中几个重点问题的研究
  




1引言

北京市引进陕甘宁天然气市内工程中公路一环Dn700天然气管线的设计压力已达2.5MPa。超高压燃气管道设计(>1.6MPa),不同于一般的高压燃气管道设计。《城镇燃气设计规范》规定,敷设设计压力大于1.6MPa的燃气管道时,其设计应按现行的《输气管道工程设计规范》执行。而《输气管道工程设计规范》以油、气田至目的地的长输管线为主要对象,其中涉及到的厂站也以油、气田厂、站建设为主,不适用于城镇燃气输配系统中的管线和厂、站建设。那么在城镇敷设超高压燃气管道时,其设计应如何执行《城镇燃气设计规范》及《输气管道工程设计规范》并将它们有机地结合起来就成为一个现实问题。随着国内天然气事业的发展,城镇天然气输配系统的设计规模也越来越大,为了保证项目的经济性和可实施性,势必要提高输配系统的设计压力。目前,北京市由我院设计并已经敷设的超高压天然气管线已接近200Km,还有几十公里的超高压管线正在敷设之中。下面结合我院所做的公路一环Dn700天然气管线工程的设计和实施情况,就城镇超高压天然气管线工程设计中的几个重点问题进行研究和总结,以利于更进一步提高工程的设计质量。

2工程概况

北京市引进陕甘宁天然气市内工程是陕甘宁盆地天然气外输工程中规模最大的下游工程,也是当前国内规模最大的城市天然气输配工程。工程主要内容包括一座城市门站、三座储配站、五座调压站、200多公里输配干线、一套输配调度自动化系统及生产配套设施等。该工程在1991年至1994年中完成了项目的预可行性研究和可行性研究,1994年开始十个子项目的初步设计,1995年开始各子项目的施工图设计。为筹措资金北京市政府在1993年将本项目列为“北京环境改善项目”中的一个子项目而申请亚洲开发银行贷款,并于1994年初通过亚洲开发银行的审查。

高压管线工程(第三子项)是陕甘宁天然气进京工程下游工程中的主体工程之一。超高压天然气管线基本沿公路一环敷设,长45Km,管径Dn700,设计压力2.5MPa。工程沿线穿越铁路5处,地铁l处,现状及规划立交11处,河流15处,穿石山坡一处。工程总投资(含部分1.OMPa管线及配套工程)64069万元人民币(其中美元124.96万美元),其中工程费21821万元人民币。

3问题研究

(1) 设计规范的选用及设计原则

公路一环天然气管线工程设计压力为2.5MPa,已超出《城镇燃气设计规范》中高压A级管道1.6MPa输送压力范围。依照《城镇燃气设计规范》规定,应采用现行《输气管道工程设计规范》。《输气管道工程设计规范》以控制管道自身的安全性为原则,与《城镇燃气设计规范》的安全性原则不完全一致。但两本设计规范的条文说明都指出,长期的实践经验及燃气管道漏气引起的爆炸和中毒事故的统计资料表明,燃气事故的发生在一定范围内并不与燃气管道与建筑物的距离有必然联系。加大管道与建筑的距离并不能完全避免事故的发生,相反会增加设计时管位选择的困难或使工程费用增加。因此,《城镇燃气设计规范》中所规定的地下燃气管道与建、构筑物之间的水平净距是考虑了施工和检修间距并适当考虑燃气输送压力的影响,规范的修编也倾向于减弱考虑燃气输送压力的影响。

《输气管道工程设计规范》是以为城市输送燃气的长输干线为主要对象。该规范以提高管道自身的强度安全作为输气管道的设计原则,参照美国国家标准ANSIB31.8,采用地区等级划分确定强度设计系数,再进行管道强度计算,管道与建、构筑物之间的水平净距在规范中并没有具体规定。设计中具体体现在以不同地区等级,采用不同的强度设计系数,进行管道强度计,来保证管道周围建构筑物的安全。地区等级是以沿管道中心线两侧各200米范围内,任意划分成长度为2km的若干地段,按划定地段内的户数确定的。

一级地区:户数在15户或以下的区段;

二级地区:户数在15户以上、100户以下的区段:

三级地区:户数在100户或以上的区段,包括市郊居住区、商业区、工业区、发展区以及不够四级地区条件的人口稠密区;

四级地区:系指四层及四层以上楼房(不计地下室层数)普遍集中、交通频繁、地下设施多的地段。城镇供气区一般应为四级地区。

各级地区强度设计系数见下表。

地区等级 强度设计系数(F)
一级地区 0.72
二级地区 0.6
三级地区 0.5
四级地区 0.4

城镇燃气输配系统既要保证系统的整体合理性,还应满足相应设计规范的要求。《输气管道工程设计规范》中虽然未确定管道与建、构筑物之间的水平净距,但并不等于不需要净距,最起码应考虑施工和检修间距。同时,高一级压力的管道总不应比低一级压力的管道距建、构筑物更近,应考虑燃气输送压力的影响。因此,在与规划、消防及上级主管部门充分酝酿、讨论的基础上,我院决定采用《输气管道工程设计规范》“以控制管道自身的安全性为原则”的原则进行管道强度计算,为保证规范执行的连续性,线路选择则按照《城镇燃气设计规范》5.3.2条高压A级管道与建、构筑物之间6米的水平净距的规定进行。这样,两本规范并用,不仅为在城区选择超高压天然气管线路由提供了可行性,而且,采用“以控制管道自身的安全性为原则”的原则,从设计上也保证了在城区敷设超高压管线的安全可靠性。同时,开创了在城区敷设超高压天然气管线的先例,为今后同类型的工程设计树立了典范。

(2)管材的选取

①管道强度计算

在进行超高压燃气管道设计时,因管线与其它建、构筑物水平净距的确定始终是以强调管道自身的安全性为前提的,因此在进行压力大于1.6MPa的燃气管道设计时,必须对管道、弯头、弯管的壁厚进行计算。

根据《输气管道工程设计规范》5.1.2条规定,管道强度计算采用如下公式:

       PD

  δ= ————

       2σsψFt

式中: δ-——钢管计算壁厚(cm);

    P ———设计压力(MPa);

    D ———钢管外径(cm);

    σs ——钢管的最小屈服强度(MPa);

    F--—强度设计系数;

    ψ——-焊缝系数;

    t———温度折减系数;当温度小于120℃时,t值取1.0。

在以往的燃气管道强度计算时,由于制管水平、施工焊接等缺乏严格的要求,在计算中要考虑一个小于1的焊接系数以确保输气安全,这实际上就增加了管道工程的钢材用量。当前,我国制管技术已有较大的提高,新的钢管标准如《石油天然气输送管道用螺旋缝埋弧焊钢管》,是参照美国APISpec 5L的标准制定的,技术要求基本一致。在《输气管道工程设计规范》中对管道的施工、焊接和检验也提出了严格的要求,以确保管道的安全运行。故在进行管道的强度计算时,不再考虑由于焊接所降低钢材的设计应力,规定焊接系数为1。

另外,《输气管道工程设计规范》中规定在进行管道强度计算时,不考虑增加管壁的腐蚀裕量。这是因为规范中明确提出了输气管道防腐设计必须符合国家现行标准《钢质管道及储罐防腐蚀工程设计规范》和《埋地钢质管道强制电流阴极保护设计规范》的有关规定。而这两本规范是根据国内外的实践经验制定的,规范中提出了防止管道外腐蚀的有效办法。在输送满足规范要求的天然气时,管子内壁一般不会产生腐蚀。同时,由于工程造价、金属耗量等经济原因,一般不允许采用增加腐蚀裕量的方法来解决管壁内腐蚀问题。因此,管道采取防腐措施后,确定管壁厚度时可不考虑腐蚀裕量。

对几种常用管材进行计算,结果如下表:

Q235B 20号钢 SM41B X42 16Mn X52
最小屈服强度(MPa) ≥235 ≥245 ≥245 ≥290 ≥340 ≥358
设计压力 (Mpa) 2.5 2.5 2.5 2.5 2.5 2.5
钢管计算壁厚 DN700 0.957 0.918 0.918 0.776 0.662 0.628
(cm) DN500 0.703 0.675 0.675 0.570 0.486 0.462
DN400 0.566 0.543 0.543 0.46l 0.393 0.372
DN300 0.432 0.415 0.415 0.350 0.299 0.284

注:表中钢管计算壁厚值均是以ψ、t为1,F为0.4情况下得出的。

在对管道进行强度计算的同时,燃气管道的壁厚还不得小于最小公称管壁厚度。在承受内压较小时计算的壁厚可能很小,为满足运输、吊装铺管和修理的要求,还应根据各种荷载条件下予以校核。一般认为D/δ>140时,才会在正常的运输、敷设、埋管情况下出现圆截面的失稳。下表列出几种常用管径的最小公称壁厚。

最小公称壁厚

钢管公称直径(mm) 公称壁厚(mm)
DN300 4.5
DN350 DN400 DN450 5.0
DN500 DN550 6.0
DN600 DN650 DN700 6.5

综上所述对于管道壁厚的确定,除了对管道强度计算的同时,还要满足最小公称管壁厚度,此外还要适当考虑在制管、运输、施工过程中人员的素质、目前的管理水平等因素可能对管道造成的损伤,适当增大管道管壁厚度。

②管材选择原则

★ 技术原则

根据《输气管道工程设计规范》,所选用钢管应符合国家现行标准《石油天然气输送管道用螺旋缝埋弧焊钢管》等的有关规定,若选用标准以外的管材,其材质应是镇静钢,并应满足下列基本要求:

  ——屈服强度与抗拉强度之比不应大于0.85;

  ——含碳量不应大于0.25%,碳当量不应大于0.45%;

  ——材料熔炼分析含硫量不应大于0.035%;含磷量不应大于0.04%。

★ 经济原则

对于相同管径的管材,其运输及施工费用基本相同,焊接材料的价格对工程投资的影响较小,经济性方面仅考虑管材价格因素。

★ 施工和运行管理原则

管材的选取应有利于管材定货、施工焊接、带气接线、事故抢修和运行管理等方面。

⑧管材确定根据以上选材原则及管道强度计算,既满足技术标准,又方便施工和运行管理,并且兼顾经济性,DN700管道几种常用材质分析对比如下表: 管材材质 Q235B SM41B X42 16Mn
管材单价A(元/t) 4070 4130 4130 4300
施焊要求 低 中 中 高
设计预选壁厚(cm) 1.03 0.95 0.79 0.79
单长管重B(Kg/m) 177.98 164.34 136.97 136.97
A/1000*B (元/m) 724.4 678.7 565.7 589.0


注:1.壁厚系列采用APISpec 5L标准系列。

2.确定设计预选壁厚时,计算壁厚向上靠至最小普通重量级管线管壁厚。

3.表中单价为本工程初设阶段某管厂按SY5036—83提供管材的出厂报价,按APl标准提供管材时,每吨增加1000~1500元。运杂费另增10%。

从以上管材的对比分析可以看出,针对DN700钢管,选择最小屈服强度低的管材,则管壁较厚,不但增加了管材重量和费用,而且为运输和施工也带来许多不便:如果选择最小屈服强度更高的管材,可以减小壁厚,但受最小公称壁厚及施工因素的限制,设计壁厚要大计算壁厚较多,高强度管材的单价又高于低强度管材,势必造成管材强度的浪费和费用的提高,而且,高强度管材在施工焊接等方面也有更高的要求。因此,DN700管线选用X42是最佳方案。同样,其它管径管材的选取也可以通过上述对比分析方法来确定。

④小结

本工程首次在国内城镇燃气输配系统中采用APISpec 5LX42管材。该管材的选用是在原北京市天然气公司提供的四种保证货源的管材的基础上,经过技术分析、经济对比并考虑管材购置、焊接质量、方便施工和运行管理等多种因素优选的结果。选用较高强度的管材,既解决了城镇超高压天然气管道的管材选择问题,又节省了工程投资,一举多得。

(3) 防腐和电保护系统

超高压天然气管线运行压力高,输送能力大,一旦出现泄露事故,其危害性也大。因此,确保管线安全可靠运行是一个基本的设计原则。而《输气管道工程设计规范》对于确保管道的安全可靠运行是建立在严把管材质量关、防蚀质量关和严把管道的施工、焊接和检验质量关的基础之上的。所以,管道的防腐方案和防腐质量是确保管道工程质量和管道安全可靠运行的关键因素之一。

埋地管道采用外防腐层与电法保护是延长管道运行寿命、减少管道运行故障的有效手段。七十年代初,自美国首次立法开始,一些国家相继立法,规定埋地管道必须采用防腐涂层与阴极保护的双重保护措施。防腐涂层是对埋地管道外壁的面保护,主要是针对均匀腐蚀而言,阴极保护则主要以点保护为主,是针对防腐涂层的漏损处。一条管道,可能由于一个点蚀而造成整条管道瘫痪而不能正常运行。近十多年来,国内对埋地管道的双重保护问题日渐重视,各地就埋地管道的腐蚀与防护问题多次召开各种专题研讨会,并对管道进行阴极保护的必要性和可行性进行了深入细致的研讨。

本高压管线工程的管道保护方案即采用单层熔结环氧粉末喷涂外防腐和牺牲阳极法阴极保护的双重保护技术。

①外防腐

近十年来北京市埋地燃气管道采用的外防腐层主要包括以下几种:

a) 石油沥青+玻璃布

b) 环氧煤沥青+玻璃布

c) 塑化沥青防蚀带

d) 无机富锌+环氧煤沥青+玻璃布

e) 环氧粉末喷涂(+聚乙烯粘胶带)

石油沥青、环氧煤沥青及塑化沥青防蚀带主要用于城区中压干线及小区中低压燃气管道的防腐。环氧煤沥青在防止细菌腐蚀和植物根系方面比石油沥青性能优越,对环境污染也较小,使用较普遍。但由于操作温度和固化时间的限制,冬季施工困难较多。塑化沥青防蚀带近几年才开始在北京市的燃气管道上使用,且价格偏高,但随着塑化沥青防蚀带的大面积推广使用,其价格会适当降低,而且其施工受环境温度影响较小,已成为常用防腐方式的一种。

无机富锌+环氧煤沥青是随着华北油田进京天然气复线工程进入燃气工程应用领域的。主要用于1.0MPa高压管线。原因是当时燃气管道的阴极保护得到重视,但实施管道阴极保护需要设置一定数量的检测桩,而在城区交通干道上设置检测桩(地上或地下)有一定的难度,并且,基于当时工程技术人员阴极保护理论水平的限制,工程工期又紧,所以采用无机富锌底漆做为管道双重保护的一种措施。而且,在当时条件下,对采用牺牲阳极或外加电流的阴极保护方案,从运行管理方面能否得到预期保护效果的疑虑,也是采用无机富锌底漆的原因之一。实际上,采用无机富锌做为金属的防蚀保护措施是有其适用环境、条件和局限性的,对于埋地管道的长效保护,尤其是做为双重保护措施,采用无机富锌并非为一种好的选择。单层熔结环氧粉末喷涂防腐技术是目前国际上公认的高效防腐方式之一。该技术九十年代初在北京液化石油气三油线上首次使用(埋地和架空),从多年运行情况看效果良好。该防腐方式采用机械化、半自动化流水线作业,原料及作业工艺易于控制,有一套完整的管道附件和补口、补伤工艺方案和一套完整的质量保障体系,性能指标远优于其他常用方式,尤其采用双重保护时更显其优越性,而且价格适中。

通过慎重分析,并与常规外防腐方式进行对比和研讨,我们决定在本超高压、大口径天然气干线工程设计中使用这种机械化、工厂化、高质量、高速度、中等成本的防腐技术,同时为保证粉末涂层的喷涂质量,环氧粉末指定采用美国3M公司产品。

选定了一种好的防腐方式并不就等于选择了好的防腐工程质量。每种防腐涂料都有其优缺点,但它们有一个共同特点,就是对埋地管道给予保护。而它们对管道的保护效果又取决于从选料至管槽回填的各个工序质量。如果在各个阶段均按照标准、规范的要求进行,那么无论哪种外防腐层、哪种阴极保护方案,都会对埋地管道起到应有的保护作用。相反,不论多么优质的涂料,多么先进的防腐手段,花费多高的投入,也不能确保对埋地管道起到应有的保护作用。只有在各个工序质量控制过程中以认真、求实、科学的工作态度,严格执行质量标准,才能确保防腐工程质量。

环氧粉末喷涂防腐方式中,涂层质量的三个关键指标就是附着力、厚度和电火花检测。这三个指标也正是我院设计人员在涂层质量跟踪工作中的重点。在粉末质量保证的前提下,涂层的附着力主要取决于钢管表面的除油、除锈及除尘质量和锚纹情况。这与钢管的原始状态,除锈用料的选择和更换频度又有直接关系。环氧粉末用料的多少则直接决定着该防腐方式的经济性。在涂层设计厚度确定的前提下,实际涂层薄,达不到设计要求;实际涂层厚,又造成不必要的浪费。

例如,在管材防腐过程中,曾因环氧粉末货运周期与工程周期冲突,指定的美国3M环氧粉末一时断货,为确保工程进度,防腐厂经设计单位及甲方同意临时调换了另外一个厂家的环氧粉末。在工程质量巡查过程中,我们加大了对更换环氧粉末的管材防腐涂层的检查力度,及时发现了涂层的附着力问题。经过分析讨论,认为关键问题之一就是钢管表面涂有防锈底漆,该问题起初并未引起防腐厂足够的重视,除油效果不好,同时抛丸除锈用钢砂又造成连锁负效应,使不带底漆的钢管造成污染。由此引起几十根防腐好的钢管重新返工。加强钢管除油工作,又彻底更换了钢砂之后,附着力问题得到彻底解决。该问题的及时纠正,虽然造成几十根钢管重新防腐,但却减少了工程事故隐患,确保了防腐涂层的质量。

再如,由于管材为螺旋缝管,螺旋焊缝根部在抛丸除锈时就不容易达到质量要求,进而影响防腐涂层质量。我院设计人员在防腐厂发现该问题后,及时反馈给工厂技术人员,改进了钢砂的选料和配比后,不但圆满解决了螺旋焊缝根部的除锈问题,而且,新选钢砂由于使用寿命增加,同时也降低了除锈成本。

还有,如防腐涂层火花检测标准问题,为了严格监督粉末质量、喷涂工艺质量、喷涂厚度以及施工过程中人为因素产生的破损问题,在质量保证、规范允许的范围内,通过实践、总结、再实践、再总结,提出了正常管段5000V、现场补口10000V的火花检测标准,并在后续同类工程使用至今。

②带状镁阳极的应用

本工程首次在城镇天然气管道电保护系统设计中引入了带状镁阳极。由于本工程的重要性,在工程设计的各个环节,都要精心细致。过去,在顶管穿跨越工程中,由于套管的屏蔽作用,套管内的管段除了工艺上采用加厚管壁、提高防腐等级等措施外,在电保护系统设计上并无更好的措施。另外,在牺牲阳极阴极保护系统中,阳极的埋设位置及深度有一定的要求,同时,阳极周围也应有一个较好的导电环境。在本工程的穿山段,管道是敷设在采用爆破方式炸出的石头管槽中的,如果仍旧采用块状牺牲阳极阴极保护方式,开挖阳极坑将非常困难,而且由于石头地质的导电环境较差,管道的阴极保护效果也不会十分理想。为了解决上述两个问题,我们查阅了大量的工程技术资料,拜访了多位学术界和工程应用领域的防腐专家及工程技术人员,并进行了多次技术调研和研讨,最终选择了带状镁阳极,并在一些专家的帮助下,进行了敷设方式和用量的选择、计算和设计。从而解决了套管内和恶劣工程地质环境中燃气管道的阴极保护问题。该工程竣工后的测试资料表明,采用带状镁阳极完全达到了设计初衷,也为同类工程提供了切实可行的参考方案。

③直埋绝缘接头的选取和布置

绝缘是埋地管道电保护系统中一项常规且重要的技术。没有绝缘,就没有电保护。过去,阴极保护的电绝缘一般是采用绝缘法兰。而绝缘法兰在绝缘性能、日常维护等方面有许多局限性,而且需要砌筑专用维护井。我们通过对国内外绝缘装置的性能、价格、施工和运行管理等方面的分析和比较,认为直埋绝缘接头绝缘可靠性高、密封性能好、设计有防爆、防雷击的放电火花间隙、施工简单、各种性能均优于绝缘法兰,而且综合费用低,性能价格比高。因此,我们在国内城镇燃气系统首次确定和选用了德国大口径、超高压、整体直埋绝缘接头专利产品,代替常规采用的安装于地下小室内的绝缘法兰,既提高了天然气管道的电保护效果,又减少了占地,方便了管道电保护系统的运行管理。自此开始,北京市燃气系统大量采用直埋绝缘接头。电保护系统设计中,绝缘装置一般布置在管线的起、终点及分支口处。本高压管线工程中,电保护系统的设计根据管道沿线的土壤腐蚀性调研和地质情况,将管道沿线土壤腐蚀环境分为几个典型地段,在干线上增设了多个分段绝缘接头,把穿山及长距离与河流伴行等特殊地段的管段与其他管段实行电绝缘,以防止不同土壤腐蚀环境相互影响和由于工程地质不同造成的宏观电池腐蚀。

(4)焊接与检验

过去,城镇燃气输配系统的设计压力最高为0.8Mpa,钢管管材大多选用碳素钢,钢管壁厚也是按照惯用壁厚系列选取,其强度远高于管道强度计算结果。焊接工艺属于常规工艺,焊缝的检验要求也比较低,抽检比例不低于5%(城镇燃气输配工程施工及验收规范CJJ33—89中规定,当设计文件无规定时,抽检数量应不少于焊缝总数的15%)、质量不低于Ⅲ级即可,除非设计文件另有特殊要求。随着城镇燃气输配系统设计压力的提高,管材的选用已经发生了较大的变化,开始采用高强低合金钢,焊接材料的选用也因管材的改变而改变,燃气管网系统的安全性要求也更加突出,过去的老一套做法已不再适用。

针对超高压天然气管道的焊接要求,《输气管道工程设计规范》明确规定,除设计文件应标明管道和管道附件母材及焊接材料的规格、焊缝和焊接接头型式,提出焊接方法、焊前预热、焊后热处理及焊接检验等明确要求外,对施工单位也应提出具体要求。施工单位在工程开工前应根据设计文件的要求,进行焊接工艺试验,并根据焊接工艺试验结果编制焊接工艺说明书。

针对城镇燃气输配系统中的管道,应按四级地区考虑,焊缝无损探伤检验数量和质量等级为:

用射线照像检验时,应对每个焊工当天完成的全部焊缝中任意选取不少于75%的焊缝进行全周长检验。

对于管道壁厚大于或等于8mm的焊件,也可先用超声波探伤仪对所有焊缝进行全周长100%检验,然后再用射线照像对所选取的焊缝全周长进行复验,其复验数量为每个焊工当天完成的全部焊缝中任意选取不少于20%的焊缝。管道穿越水域、公路、铁路的管道焊缝以及未经试压的管道碰口焊缝,均应进行100%的射线照像检验。用超声波探伤检验的焊缝,其质量的验收标准应按现行国家标准《钢焊缝手工超声波探伤方法和探伤结果分级》执行,I级为合格。

用射线照像检验的焊缝,其质量的验收标准应按现行国家标准《钢熔化焊对接接头射线照像和质量分级》执行,Ⅱ级为合格。设计文件中采用射线照像检验还是超声波探伤加射线照像复验则要取决于管道壁厚、工期以及两种检验方式的质量和速度。

陕京市内工程由于施工周期要求紧迫,而采用X射线照像时需要的时间长,因此我们采用了100%超声波探伤,加任意抽取全部焊缝的20%进行复验的方式。对管线穿越铁路、河流、大砂坑及重要交通干道等特殊地段的管道焊缝以及未经试压的管道碰口焊缝则采用100%的射线照像检验,而且对未经试压的管道碰口焊缝要求工级为合格。

近一年来,随着Y射线源照像装置的引进,射线照像检验所需的时间减短,其检验结果的可信度又高于现场定级的超声波探伤方式,工程又开始采用纯射线照像检验方式。

(5) 压力试验

管道的压力试验包括强度试验和严密性试验。

《城镇燃气输配工程施工及验收规范))CJJ33—89(适用压力不大于0.8MPa)中规定,燃气管道的压力试验介质宜采用压缩空气。燃气管道的强度试验压力应为设计压力的1.5倍,严密性试验的试验压力应为设计压力的1.15倍。

《输气管道工程设计规范))GB50251—94则根据地区分级,规定四级地区管道的强度试验应采用水作为试验介质,试验压力不应小于设计压力的1.5倍;严密性试验用气体作为试验介质时,其试验压力应为设计压力。

《工业金属管道工程施工及验收规范》GB50235-97对压力试验的规定则为:压力试验应以液体为试验介,当管道的设计压力小于或等于0.6MPa时,也可采用气体为试验介质,但应采取有效的安全措施。当管道的设计压力大于0.6MPa时,必须有设计文件规定或经建设单位同意,方可用气体进行压力试验。气压试验的试验压力应为设计压力的1.15倍。输送可燃流体的管道必须进行泄露性试验,泄露。性试验的试验介质宜采用空气,泄露性试验压力应为设计压力。从以上几个正在执行中的国标、行标的规定中可以看出,由于编制时间不同,应用的范围不同,对燃气管道压力试验的要求也不尽相同。针对城镇燃气管道系统的压力试验,尤其是超高压天然气管道的压力试验,则应在执行国家标准、行业标准的同时,必须认真考虑压力试验的安全性、试验介质的来源与排放、试验介质对燃气输配系统的影响等因素。

城市天然气供应绝大多数输送的是干天然气,燃气输配系统也是按照干天然气进行设计的。由于城市道路下市政管道多,管网综合以有压让无压为原则,燃气管道的纵断布置比较复杂。若采用水作为压力试验介质,压力试验完成后,如何彻底地将水排除必然成为一个新的问题。如果水排除不干净,势必会对今后燃气输配系统的运行带来麻烦。因此,在北京市引进陕甘宁天然气市内工程中,在征求建设单位同意、并且建设单位进行具体操作试验的基础上,我们在设计文件中规定,强度试验采用空气或惰性气体为试验介质,但必须采取有效的安全措施,并应报请主管部门批准。气压试验的试验压力应为设计压力的1.15倍。严密性试验用空气作为试验介质,其试验压力应为设计压力。

4 结束语

对于城镇超高压天然气管道的设计,由于工程设计的全新性,许多技术方案和措施有待实践检验,有些技术问题需要在实践中摸索、总结和提高,既要坚持设计质量的要求,又要满足施工的需要,同时还要考虑节省工程投资。为此,我院设计人员把工程设计工作延续到了从钢管在防腐厂防腐到施工现场管沟回填的全部过程,实施24小时的配合和服务,质量第一,服务第一。除前面所述的一些例子外,还有大量的实例。比如我们在跟踪钢管防腐质量时发现了个别管材表面的质量问题,在跟踪弯管防腐质量时发现了弯管加工中存在的质量问题,又如在施工现场发现极个别管子防腐涂层厚度不匀问题,在电保护工程的质量跟踪过程中我们发现,由于对管道实施阴极保护而对管道防腐涂层的破坏没有得到较好的恢复,还有在运输和管沟回填过程中施工人员不注意管道防腐层的保护问题等。所有这些问题,都需要设计人员以高度的责任心、质量意识和主人翁精神去跟踪、反馈和解决。也只有这样,才能使“以控制管道自身的安全性为原则”的原则落到实处,才能确实保证工程的设计质量和工程质量。

北京市引进陕甘宁天然气市内工程高压管线工程97年已陆续经竣工投运,参加验收的各方都对本工程的质量表示满意和放心,这当然离不开各施工队伍的辛勤劳动,离不开各单位、各部门之间的团结、协作,我们认为,这其中必然也包含着我院设计人员的精心设计、全程服务、质量意识、创优意识、节约和创新精神。 通过几年来城镇超高压天然气管线工程的设计实践,我们积累了一定的设计经验,也锻炼和培养了一支敢打敢拼、技术过硬的设计队伍,但毕竟城镇超高压天然气工程的设计工作刚刚起步,有许多课题需要去深入研究和解决。比如城镇超高压天然气管道的水力计算问题、应力计算问题、压力试验过程中管道的加固问题、管线通过不良工程地质地段的稳管防护措施问题等。在工程配合和质量跟踪过程中,还会有一些新的问题出现。但是我们相信,解决超高压天然气工程的质量问题和安全性问题,只要能够参照和执行“以控制管道自身的安全性为原则”的原则,许多棘手的工程实际问题将迎刃而解。







作者: 戚大明 李永威 李华琴 孙明烨 阅读次数:1031

相关论文
免费打赏
qazw789
2010年09月07日 14:56:19
2楼
:call: :victory: .
回复
xupeng900
2010年09月30日 10:46:47
3楼
学习了、谢了楼主
回复
lh117me
2010年11月15日 20:08:21
4楼
正继续此规范,太感激楼主了
回复
artemis93
2010年11月15日 21:55:28
5楼
学习了 谢谢楼主!
回复
xl_han1977
2010年11月18日 10:51:53
6楼
学习了、谢了楼主
回复
zhongwenxunshen
2010年11月24日 10:32:25
7楼
急于下载东西没币了,灌水~~~,海涵!
回复
liwen3036
2010年11月28日 18:47:37
8楼
请问这是最近发表的论文么?因需要参考,所以想知道内容所指年限为何时,谢谢~
回复
sxjian2156
2014年01月13日 18:48:24
10楼
2.5MPa也就是GB50028城镇燃气设计规范里面的高压B级别,这可不是什么超高压管道。
这篇文章是哪年的?引用规范都不是最新的。
希望不要误导大家。
回复

相关推荐

APP内打开