UASB中三相分离器的设计
上海猫王
上海猫王 Lv.10
2005年07月11日 10:51:14
来自于水处理
只看楼主

编制了UASB的计算软件,可以在本网站的软件下载中下载。希望大家喜欢,多提意见。也可以在如下地址在线计算:http://eem.cnjlc.com/technology/tech04010.htm如果大家有关于IC反应器计算的资料,希望与大家共同探讨!

编制了UASB的计算软件,可以在本网站的软件下载中下载。希望大家喜欢,多提意见。
也可以在如下地址在线计算:

http://eem.cnjlc.com/technology/tech04010.htm

如果大家有关于IC反应器计算的资料,希望与大家共同探讨!

1121050265307.gif

免费打赏
lihaojun
2006年02月27日 11:13:03
52楼
强烈建议大家看看这本书《废水厌氧生物处理理论与技术》,中国建筑工业出版社出版 胡极翠编著,顾夏声主审,上面介绍的还是很深刻的,废水处理理论与动力学写得都非常好!有时间大家多交流 qq30652936 e-mail :haojunli67@sina.com
回复
上海猫王
2006年02月27日 13:51:04
53楼
楼上的朋友有这个书的电子版本吗?
回复
drifting
2006年02月27日 13:55:46
54楼
好东东,以前还不知道具体是这样的,谢谢
回复
上海猫王
2006年02月27日 14:19:43
55楼
Schematic diagram of UASB reactor
回复
上海猫王
2006年02月27日 14:20:39
56楼
Design of GLS separator

The shape of the GLS device considered in design is presented in Figure 3. The gas-water interface inside the dome is considered at the depth Dh from top of the dome. In the beginning, the height of GLS separator can be considered as 25% of the total reactor height. For estimating initially the number of domes required the angle of dome with horizontal can be assumed as 45o, and base width of dome (Wb) can be calculated as 2(h+Dh)/ tan q. The Dh is to be calculated as (Wt/2) tan q, and initially the top width (Wt) can be considered as 0.2 to 0.3 m. The number of domes required for given diameter (or width for rectangular reactor) can be calculated by dividing width or diameter by WB, and rounding this number. Where, WB=Wb+Wa, and Wa can be considered as 0.2 m initially. After deciding the number of domes, the flow rate shared by each dome, is to be estimated in proportion to the base area of each dome, including aperture width, to the total area of the reactor.

Aperture width at bottom of gas dome: The area of aperture (Ap) required can be computed based on the maximum inlet velocity of liquid to be allowed. This area can be estimated as flow rate per dome for rectangular reactor (or central dome in case of circular) divided by maximum velocity to be allowed. The maximum inlet velocity of 3 m/h is safe for medium and high strength wastewater and for low strength the inlet velocity less than 2.0 m/h should be preferred. The width of aperture (Wa) is to be calculated as aperture area divided by length (or in case of circular reactor by diameter) of the reactor. It is recommended to use minimum aperture width of 0.2 m and if the width required is greater than 0.5 m, then increase the number of dome by one and repeat earlier steps till it is less than 0.5 m.

Figure 3. Details of the Gas-Liquid-Solid (GLS) Separator



Width at gas-water interface: The gas production expected in the reactor can be estimated based on the OLR selected for the design and expected COD removal efficiency in the range 70 to 90 percent. The gas production can be estimated as 0.35 m3 /kg COD removed at ambient temperature. From this gas production the biogas collection per dome is to be worked out in proportion with percentage of area covered by the dome. The biogas loading at gas-water interface can be calculated as gas collection per dome divided by product of top width of gas collector (Wt) and length of the reactor (diameter, in case of circular reactor). The loading of biogas at gas-water interface should be kept less than 80 m3 gas/ m2.d (about 3 m/h). Initially the top width can be assumed as 0.3 m and for this width if the biogas loading is less than 3.0 m/h then adopt 0.3 m as top width.

If the biogas loading is greater than 3.0 m/h, calculate the top width required. Generally, top width of 0.3 to 0.7 m can be adopted in design with maximum of 1.0 m. When even with maximum top width, if biogas loading is greater than 3.0 m/h reduce the height of GLS separation device to 20% and repeat the earlier steps of GLS separator design, with fresh number of domes. Even with reduction in height of GLS separator if these checks are not satisfying, provide additional layer of gas collector dome. When two or more layer of gas collectors are used the height of each layer can be 15 to 20% of the overall reactor height, with minimum height of each layer as 1.2 m and maximum up to 1.5 to 2.0 m. The fresh biogas collection per dome is to be worked out and further steps are repeated until all design conditions are satisfied.
回复
yqz9527
2006年02月28日 21:42:22
57楼
楼主的软件很好。
我搞厌氧的五年多了,谈一下:
厌氧生物处理技术发展至今已有120多年的历史,特别是在上世纪70年代高效厌氧反应器在工业废水处理领域获得了长足的发展,其主要反映在水力停留时间(HBR)与生物固体停留时间( SBR)的分离而导致高效厌氧反应器技术的迅猛发展。
现应用于工业废水处理领域的高效厌氧生物反应器技术主要有升流式厌氧污泥床反应器(UASB)、膨胀颗粒污泥床反应器(EGSB)、内循环厌氧反应器(IC)。无论哪种厌氧反应器我的经验是没有颗粒污泥,不会有高的负荷。
UASB我已经基本不用了,大家可以实际调查一下,现在用的UASB真正负荷能有多少?我现在主要用IC反应器,用颗粒污泥接种,负荷确实是想象不到的高,我估计末来五年IC将占据中国高浓度厌氧污水处理市场。
拙见而已。
回复
上海猫王
2006年03月01日 09:08:06
58楼
楼上的有关于IC反应器计算的资料吗?据我所知,PAQUS公司没有对IC反应器进行专利保护。不知道对不对,请各位网友指正!
回复
yqz9527
2006年03月01日 10:30:46
59楼
帕克公司从进入中国以来原来没有申请专利,但2004年已申请.不管他申请没申请专利,他们的施工保密工作做的很好,我从没见过帕克IC的内部结构,但原理估计都一样.
回复
上海猫王
2006年03月03日 16:52:10
60楼
找到了他们申请专利的示意图。
回复
zhangxiaoyanxy
2006年03月04日 09:09:52
61楼
楼主什么时间能做好,传上来,让大家共同分享一下吧
回复

相关推荐

APP内打开