混凝土冻害的原因? 混凝土构件中的孔径分为三个范畴,即凝胶孔、毛细孔及气泡,在某一固定负温下混凝土构件中水分只有一部分是可冻水,可冻水产生多余体积直接衡量冰冻破坏威力。 可冻水(即冰)主要集中在水泥石及骨料颗粒的毛细孔中,凝胶水由于表面的强大作用不大可能就地冻结,气泡水易冻结。混凝土构件中各种孔径的空隙可认为连续分布,分布在这些空隙中的水在降温过程中将按顺序逐步冻结,不可能同时冻结。冻水一般是温度的逆函数,温度愈低,可冻水愈多。
混凝土冻害的原因?
混凝土构件中的孔径分为三个范畴,即凝胶孔、毛细孔及气泡,在某一固定负温下混凝土构件中水分只有一部分是可冻水,可冻水产生多余体积直接衡量冰冻破坏威力。
可冻水(即冰)主要集中在水泥石及骨料颗粒的毛细孔中,凝胶水由于表面的强大作用不大可能就地冻结,气泡水易冻结。混凝土构件中各种孔径的空隙可认为连续分布,分布在这些空隙中的水在降温过程中将按顺序逐步冻结,不可能同时冻结。冻水一般是温度的逆函数,温度愈低,可冻水愈多。
连续的毛细管沟网络体系破坏过程;随着水化进展凝胶体生成,网络的联系被破坏、分成个别孤立的毛细孔(水在其中冻结的容器),而凝胶连同其特征性凝胶孔和少数细小毛孔就构成透水器壁。随着水化深入,材料质地致密及温度的下降,将有更多细小空间的水参与冰冻,作为器壁的凝胶的渗水性也不断减小。
当冰冻多余水受水压力推动向附近气泡(逃逸边界)排除时,材料本身将受到推移水分前进的后应反作用力导致受拉破坏。材料组织愈致密水流宣泄不及,疏导不畅引起的动水压力增大。
水泥浆中包含的一般是盐类稀溶液,一旦冰冻后变为纯冰和浓度更高的溶液;随着温度下降,浓度不断提高。另一方面邻近凝胶中水分始终保持不冻,其溶液浓度保持原有的水平,于是在毛细孔溶液和凝胶水之间出现浓度差。浓度差使得溶剂向溶液中自发扩散渗透,即溶质向凝胶水中扩散,而凝胶水向毛细孔中浓溶液转移。其结果毛细孔中水分增加,和冰接触的溶液稀释,冰晶逐渐生长,长大。当毛细孔穴充满冰和溶液时,冰晶进一步生长必将产生膨胀压力,导致破坏。
另一方面在水压的情况下,水分冻结膨胀,多余水在压力推动下外流,流向可能消纳水分的未冻地点;作为水流的结果压力消失,析冰情况正好相反:水分不是从冰冻地点外流,而是从未冻地点(凝胶)流向已冻冰地点(毛细孔),方向恰好相反。未冻地点的水移动一定距离后,最后以冰冻结束,作为水流运动的结果产生压力。
以上两点可以综合为:第一阶段毛细孔中始发的冰冻,向所有方向产生的水压力,引起内应力;第二阶段较大毛细孔中水分首先生成冰晶,可从小孔中吸引未冻结水使自身增长,产生静应力。
骨料作为一个组分,如果冰冻膨胀同样会成为导致混凝土破裂的应力来源;为了保证混凝土完好,必须要求骨料和水泥净浆两者都不破坏。由于引气混凝土的广泛使用,水泥净浆的抗冻性较易保证;从这个意义上来说,骨料抗冻性更具有突出意义。如颗粒大到一定限度以上,核心存在的距离任何逃逸边界均在临界尺寸以上的保水区域,此时将因超过骨料破裂强度的内部水压力而破裂,这就是临界储存效应。凡属中等吸水、细孔结构、渗透较低的岩石,这种危险较突出;空隙多、渗透性强的骨料临界尺寸也很大。在特殊情况岩石吸水率极低(如重量吸水在0.5%以下的石英岩),可冻水极少,冰水是无渗应力出现;根据施工经验应避免使用高度吸水骨料,小颗粒石粒可以得到较大抗冻保证。
综上所述,混凝土材料的抗冻性是以下三方面的变函数即:(1)材料的性质(强度、变形、空隙情况);(2)气候条件(冻融循环次数、最低温度、降温速度、降水量、空气相对湿度等);(3)材料使用方式(降水量、自由水及跨越材料的蒸气压梯度与温度梯度)。区分这几方面变数将构成研究这一复杂问题的一个根本方式的转变,这样我们就有可能正确预言材料在指定环境中的抗冻能力。
混凝土早期受冻可分为未掺外加剂混土 受冻及掺外加剂混凝土受冻。实践和试验表 明[ 1][ 2] [ 3] , 前者受冻往往造成不可恢复性损伤, 给工程留下后患;后者受冻后结果与掺外 加剂所能够承受的负温冻结温度有关, 当混凝 土受到高于外加剂本身设计受冻温度的气温 冲击时, 表现为冻结, 对混凝土造成的损伤小 于工程允许的损伤度, 不会对工程构件造成伤 害;当混凝土受到低于外加剂本身设计受冻温 度冲击时, 表现为冻害。对混凝土造成的损伤 远大于工程允许的损伤度, 这就会给工程留下 隐患。因此, 在冬季施工中, 掌握混凝土的冻 结规律, 使得混凝土工程避免冻害是至关重要 的。
1 混凝土的早期受冻模式
我国的科研人员[ 2] [ 3] 都曾对混凝土早期 受冻模式进行过试验研究, 概括起来大致可分 为三种受冻状态;第一, 新浇混凝土在初始强 度为 OM Pa 状态下受冻, 其冻结模式图表现为 陡斜线至恒温后的直线状态;第二, 混凝土浇 注后并具有初始强度 f
1.1 新浇筑混凝土立即受冻
此种情况为典型的混凝土受冻害状况。
初始强度为 0Mpa 时, 混凝土内部分布着连续 性水介质, 冻结过程为其典型的 T ·C ·Powers 所描述的混凝土冰冻破坏机理的第四种情况, 即 Tabar-Collins 冻胀过程, 混凝土冻结时, 水 由热端向冷端迁移, 并在冰峰面处堆聚、结冰, 形成“宏观规模析冰” 现象, 随着冻结的深入, 冰夹层的出现面产生冻胀现象使得混凝土由 水连续介质过程变为冰夹层断续介质过程, 而 把混凝土内部胀开, 破坏了混凝土的初始结 构, 当温度回恢后, 但已形成无法弥补和恢复 的裂缝。因而给工程留下了隐患。
1.2 具有初始强度 f
此种情况是混凝土虽已具备少许初始强 度 fcu.o., 但没达到抗冻临界强度 fpcl, 混凝土在 这种条件下受冻时, 成冰过程受阻, 水份需穿 过刚形成不久的水泥 C -S -Hgel 网而聚集、 结冰、膨胀, 在混凝土内部大中心质的沉降充 水区或水泥浆体与骨料的交结处开始发育冰 晶, 冰晶形成后穿越 C -S-Hgel 网之后再发 育长大, 当长大到一定程度时即彻底破坏刚刚 形成的混凝土内部结构, 从而给工程留下无法 弥补的隐患, 此种情况混凝土各项性能下降甚于第一种冻结情况, 表现为混凝土后期强度下 降达 50 %之多, 抗渗等级几乎为零, 钢筋粘结 力下降达 90%以上。因此, 冬期施工中控制 混凝土抗冻临界强度极为重要, 绝对不允许出 现此种冻结情况。
1.3 具有相当强度 f>pcl的混凝土冻结
此种情况受冻系指混凝土具有抗冻临界 强度 fpcl后再遭冻结, 当混凝土具有抗冻临界强度时, 混凝土内部已形成一定结构体系, 尤 其是孔结构体系发育较为完善, 在混凝土内部 已经初步形成凝胶孔、毛细孔、大孔及宏观堆 聚构造体, 而相应于各种状态下的水也已分为 可冻结水及不可冻结水两类, 按水泥化学理 论, 在这样的初始结构中会形成化学结合水, 这是一种不可冻水, 如对 C30 级以下的混凝土取抗冻临界强度为 5.0M Pa 时, 按水泥完全水 化化学结合水占 15 %左右计算, 则此时不冻水可在 2 %~ 3%左右;另外, 此时还可形成凝 胶水、毛细孔水及可冻结的游离水。由于具有 抗冻临界强度的混凝土中形成了不可冻水及 部分可冻水, 使得混凝土在负温下具有抵抗冻 害能力, 此处情况下冻结可使得混凝土因冻胀 变形值减小, 可控制在允许变形值之内而不会 给结构带来重大损伤。因此, 当实际工程中出 现此种情况冻结时, 一般情况不会影响工程质 量。综上所述, 混凝土抗冻临界强度是个至关 重要的问题, 所以应该认真研究混凝土在负温 条件下达到抗冻临界强度的措施、方法、手段, 同时, 还应确定同结构中不同设计等级下的混 凝土 应 该具 有 不 同 的抗 冻 临 界 强度, 如 G B50204-92, JGJ104-97 对于 C40 级以下或 普通混凝土的抗冻临界强度取为 5.0M Pa, 掺 防冻剂的混凝土抗冻临界强度取为 4.0M Pa, 即可免遭冻害。
工程施工中混凝土冻害的预防
推荐资料(点击文字跳转):
钢筋混凝土冻害事故分析与处理方法和措施
你知道冬天混凝土冻害的危害和解决措施吗?
知识点:混凝土冻害的原因、混凝土冻害的预防