电镀废水中存在多种致癌、致畸、致突变或剧毒物质,如重金属离子或氰化物等,对环境与人类危害极大,必须加以严格治理。人们开发了许多工艺和方法用于处理电镀废水,主要有:化学沉淀、吸附、生物、电解、离子交换和膜分离等。 东丽膜分离、离子交换或东丽纳滤膜元件结合工艺在电镀废水的处理应用中,通常可以实现在线回收,并且回用水的水质较高。然而,由于生产规模、镀件基材、镀层材料、电镀工艺、管理控制水平以及电镀场建设历史等诸多较为复杂的原因,许多现有电镀企业或电镀生产线上实行完全意义上的全循环(电镀金属和水)仍然是难以实现的。
电镀废水中存在多种致癌、致畸、致突变或剧毒物质,如重金属离子或氰化物等,对环境与人类危害极大,必须加以严格治理。人们开发了许多工艺和方法用于处理电镀废水,主要有:化学沉淀、吸附、生物、电解、离子交换和膜分离等。
东丽膜分离、离子交换或东丽纳滤膜元件结合工艺在电镀废水的处理应用中,通常可以实现在线回收,并且回用水的水质较高。然而,由于生产规模、镀件基材、镀层材料、电镀工艺、管理控制水平以及电镀场建设历史等诸多较为复杂的原因,许多现有电镀企业或电镀生产线上实行完全意义上的全循环(电镀金属和水)仍然是难以实现的。
东丽纳滤膜反渗透
因此,研究开发东丽纳滤膜适合于末端处理电镀废水的工艺技术,最大程度地处理、回用水资源,实现废水的零排放或微量排放仍然具有实际意义。
交互平衡式膜分离-化学沉淀工艺
交互平衡式膜分离-化学沉淀工艺(IBMS-CP是将东丽纳滤膜嵌入化学沉淀过程中,并使化学沉淀和膜过程交互循环并达到动态平衡的工艺过程。在东丽纳滤膜元件中,经化学沉淀处理的废水,经过多级沉降池去除沉淀后与含有重金属的废水在综合调节池中混合,再进入膜分离单元进行浓缩分离。视回用水质的要求,膜分离单元的透过液,或直接回用,或经进一步处理而回用。而浓缩液则回到化学沉淀单元进入下一个循环处理过程。一般此处的膜分离单元采用纳滤系统。其原因在于:纳滤可以较好地截留浓缩二价和高价重金属离子,同时使一价盐进入透过液,从而避免一价盐在IBMS-CP循环过程中的积累。
由于东丽纳滤膜对一价盐的透过率将随其浓度上升而增大,因此,在东丽纳滤膜元件中,进入和透出IBMS-CP系统的一价盐将在其到达某浓度时自动达成动态平衡状态,从而使一价盐在表观上“穿过”IBMS-CP循环。同时,该过程的产水被“软化”,这是东丽纳滤膜元件的特点,也是其能够运行的关键。另外,由于纳滤过程提高了多价离子的浓度并大幅减少了废水总量,因此将使化学沉淀设备的容量显著减小且反应沉淀过程更迅速、完全,东丽纳滤膜元件是一个使得化学沉淀和膜过程有机结合且相互促进、强化的过程。
东丽纳滤膜
介绍了东丽纳滤膜的设计思路和工艺路线,并结合某公司的电镀废水处理和回用项目取得了这一应用领域的实际运行数据,得出如下结论。
1) 东丽纳滤膜适用于含重金属的废水处理和/或回用领域。东丽纳滤膜元件运行平稳,受来水水质波动影响较小,产水水质稳定,系统易于控制且易恢复。
2) 东丽纳滤膜与RO联合应用,可以使RO系统在极高的回收率下运行并得到较高的产水水质,可以实现电镀末端废水的零排放或微量排放。
3)处理系统的主要单元均为膜系统,因此便于实现自动运行,减少人力需求和劳动强度,也大大改善了运行环境。