1.概述 污水处理设施经常排放出含有恶臭污染物的有害,已经成为较大的恶臭污染源,其中污水处理厂提升泵站也是产生恶臭的主要场所之一。在污水提升输送过程中产生大量的恶臭气体及有毒有害气体,主要含有硫化氢、氨、甲烷、挥发性脂肪酸(VAFS)等恶臭成分,成为一种公害。随着国家各项环保法规的完善和落实,恶臭污染物的排放开始受到严格的限制,目前污水处理厂及站除臭已经逐渐受到人们的重视。通途路泵站地处宁波市江东区通途路院士路交汇路口,是宁波市污水处理系统中不可缺少的一部分。通途路泵站主要是将污水和宁波枫林开发有限的垃圾渗滤液输送到宁波市江东北区污水处理厂。在污水提升过程中产生的恶臭气体严重影响了宁波市的外部形象,危害了泵站操作人员和周围群众的身心。基于上述原因,通途路泵站的改造工程无论是从环保的角度还是关系到对外形象,改善投资环境,适应社会发展,都显得极为重要。
污水处理设施经常排放出含有恶臭污染物的有害,已经成为较大的恶臭污染源,其中污水处理厂提升泵站也是产生恶臭的主要场所之一。在污水提升输送过程中产生大量的恶臭气体及有毒有害气体,主要含有硫化氢、氨、甲烷、挥发性脂肪酸(VAFS)等恶臭成分,成为一种公害。随着国家各项环保法规的完善和落实,恶臭污染物的排放开始受到严格的限制,目前污水处理厂及站除臭已经逐渐受到人们的重视。通途路泵站地处宁波市江东区通途路院士路交汇路口,是宁波市污水处理系统中不可缺少的一部分。通途路泵站主要是将污水和宁波枫林开发有限的垃圾渗滤液输送到宁波市江东北区污水处理厂。在污水提升过程中产生的恶臭气体严重影响了宁波市的外部形象,危害了泵站操作人员和周围群众的身心。基于上述原因,通途路泵站的改造工程无论是从环保的角度还是关系到对外形象,改善投资环境,适应社会发展,都显得极为重要。
2.生物处理工艺选择
随着宁波环保模范的创立及市民对环境需求的不断提高,环保工作的要求也越来越高,相应的在环保处理工艺上越来越先进、高效。在空气净化方面,目前的在和工艺多种多样。生物除臭法是近年来应用最广泛的工艺之一,其中典型的处理工艺包括生物滴滤床(池)、生物滤池、生物洗涤塔等。生物滴滤床(池)是一种高效的净化装置,它用惰性填料作为填料,在运行前期驯化、筛选一定量的微生物菌种在填料表面生长繁殖并形成生物膜,循环液从上方喷淋而下,给生物膜提供营养,同时还起到调节pH的作用,恶臭气体被输送到生物膜界面后,被吸收进入生物膜内,一部分作为微生物的营养源和,另一部分被氧化分解成二氧化碳和水等简单物质。(生物滴滤床(池)处理工艺流程如下图)
生物滴滤床(池)因为其具有环境条件易于控制,毒性新陈代谢物质经营养液循环流动可以及时排出,具有更低的压降、pH值和营养控制及低运营成本等优点,因此在本次除臭技术选择时考虑采用高效率的生物滴滤床(池)装置。
3.组合式生物除臭工艺机理简介:
组合式除臭技术是一种将生物滴滤床法和生物滤池法的优点充分、合理的结合的生物除臭工艺。其特征是:设置二级装有生物填料层的滤室,前一级滤室的出气口与后一级滤室的进气口相通,至少有一级滤室中设有喷淋装置,喷淋装置与设于滤室下方的循环液箱组成循环回路。两级滤室所配的填料不同,在一级滤室采用惰性填料,该填料具有表面积大,孔隙率高,质量轻,风阻小、不堵塞、菌种易附着等优点,在二级滤室中采用特殊天然有机填料,该天然自带微生物菌,无需加入其他营养物质,能高效的氧化降解恶臭气体中恶臭成分,两种填料的混和配比,使得生物滤层具有一定的填料一定的强度且受压不变形,有着较好的通气能力和适度的持水能力,且具有缓冲性,构成了适合各种微生物生长的良好环境,建立了一个多模块、多单元的组合式生物处理系统(包括生物处理单元,布水、布气单元,自动控制单元、滤体单元等)具有良好的除臭效果。
生物降解H2S的过程可以归纳为以下几个步骤进行:
(1)H2S气体与水接触,溶于水,由气相转移至液相,此阶段反应遵循亨利定律。
(2)溶于水的H2S被微生物吸附或吸收在生物体内,当溶液流经填料表面时,溶解在水中的H2S被栖息在填料上的生物所吸附,由液相转移到生物相,此阶段遵循一般生物化学反应。
(3)H2S被微生物氧化分解,在转化过程中产生能量,为微生物的生长与繁殖提供了,使H2S转化持续进行。其中,H2S部分转化成为硫磺颗粒,另一部分转化为硫酸盐溶解于喷淋水中,此过程遵循能量守恒定律。
上述第一步中,H2S溶于水,H2S在水中的溶解遵循亨利定律。当气相压力大时,H2S的溶解度增大,温度升高时,溶解度减小。
同时溶于水的H2S发生电离,存在下列离解平衡:
H2S=HS-+H+ k=5.7×10-8 (1.1)
HS-=H++S2- k=1.2×10-15 (1.2)
在水溶液中,H2S、HS-、S2-的含量与溶液的pH值、气体温度、压力等有关。在生物器中,水沿着被生物膜包裹着的填料自上而下流动,含H2S气体自下而上流动。在反应器内气液接触,使H2S尽可能多的溶于水中。
在第二步中,水中溶解的H2S、HS-等离子逆水流方向,从下向上流动。在滤床内被微生物吸附,从而从液相中被除去。这一步是由于生物膜表面附着水,即依靠液膜传递来完成的。生物膜具有很强的吸附能力,表面总有一层附着水,附着水中的H2S被生物膜吸附、吸收,使水中的H2S浓度减低,同时流动水中的H2S又不断地向水膜传递,而水相中的H2S减少,又使气相中的H2S不断溶解。
在第三步中,被微生物吸附的H2S被生物氧化分解。