预应力混凝土连续梁桥中的若干问题(一) 一、跨径比 一般情况下,为使边跨正弯矩和中支点负弯矩大致接近的原则,以使布束更趋合理,构造简单,故L1/L2=0.539~0.692是常见的边、主跨的跨径比范围,当L1/L2≤0.419时,边跨则需压重,应属于非常规的特殊处理;大都L1/L2=0.54~0.58则较合理,这将有可能在边跨悬臂端用导梁支承于端墩上合拢边跨,取消落地支架。
预应力混凝土连续梁桥中的若干问题(一)
一、跨径比
一般情况下,为使边跨正弯矩和中支点负弯矩大致接近的原则,以使布束更趋合理,构造简单,故L1/L2=0.539~0.692是常见的边、主跨的跨径比范围,当L1/L2≤0.419时,边跨则需压重,应属于非常规的特殊处理;大都L1/L2=0.54~0.58则较合理,这将有可能在边跨悬臂端用导梁支承于端墩上合拢边跨,取消落地支架。
二、梁高
主跨箱梁跨中截面的高跨比h0≈(1/46.2~1/86)L2,通常为(1/54~1/60)L2,在箱梁根部的高跨比h1≈(1/15~1/20.6)L2,大部分为(1/18)L2左右。
目前在国际上有减少主梁高跨比的趋势,已建成的挪威stolma桥和Raftsundet桥,在跨中区段采用了轻质砼,减轻了自重,减小了主梁高跨比,其跨中h0≈1/86·L2和1/85.1·L2,根部高度分别为h1=1/20.1·L2和1/20.6·L2。
一般情况下,可采用2次抛物线的梁底变高曲线,但往往会在1/4·L2和1/8·L2处的底板砼应力紧张,且在该截面附近的主拉应力也较紧张,因而,可将2次抛物线变更为1.5~1.8次方的抛物线更合理。
在江苏平原通航河道上,为了满足通航净空的要求,在设计时甚至采用大于2次抛物线的幂级数设置底板曲线,这是值得十分注意的问题,事实证明,跨中挠度一般较大,极易发生正弯矩裂缝和斜裂缝。
三、顶板厚度
以往通常采用28cm,近年来已趋向于减小为25cm,这显然与箱宽和施工技术有关。
四、底板厚度
以往通常采用32cm(跨中),逐渐向根部变厚,少数桥梁已开始采用28-25cm者,其厚跨比通常为(1/140~1/160)L2,也有用到1/200·L2者。
挪威stolma桥和Raftsundet桥最大底板厚度为105cm和120cm,合跨径的1/286.7和1/248.3,这将取得了明显的经济效益。
五、腹板
一般为40~50cm,但应特别注意主拉应力的控制,近年来在腹板上出现较多斜裂缝的病害甚多,应予谨慎。
增加箱梁的挖空率,减轻截面的结构自重,采用高标号砼,采用较大吨位的预应力钢束,采用三向预应力体系等,无疑都是提高设计水平,获得良好经济效益的重要措施,但同时又必须合理地掌握好“度”,必须确保结构的安全度和耐久性。
六、连续通长束不宜过长
根据连续结构的受力特点,截面上既有正弯矩也有负弯矩,个别设计中将连续通长束顺应弯矩包络图仅作简单布置是欠合理的,尤其对于较小跨径的矮箱梁,其摩擦损失单项即可达40~60%σk之多。建议此时可采用两根交叉束布置,也可改用接长器接长,分成多次张拉等。但在具体设计时接长器也不宜集中在某一个断面上,以使截面的削弱过于集中,同时也会造成施工上困难。
七、普通钢筋是预应力砼结构中必须配置的材料
当混凝土立方体试块受压破坏时,可以清楚地看到混凝土立方体试块侧向受拉破坏的形态。也即预应力仅在某一个方向上施加了预压应力,而在其正交方向却会产生相应的侧向拉应力,这是预加应力的最基本概念,必须牢固掌握,灵活应用。
因而,在预应力混凝土结构中必须配置一定数量的非预应力钢筋,以保证预压应力的可靠建立。为此,在一般情况下,非预应力钢筋约为80-100kg/m3(一立方米砼中的含筋量)。偏少、偏多的构造钢筋均需作适当优化和调控。例如××桥为多跨L=42m的预应力混凝土等高度连续箱梁,设计中采用了185kg/m3的普通钢筋,明显偏多,但在某些局部的普通钢筋却又偏少。又如某桥的非预应钢筋仅为36.6kg/m3,实属太少。
八、关于扁波纹管、扁锚的采用
扁波纹管的采用,日益广泛,有利于减少构件的截面尺寸,但必须注意如下几点:
1、扁波纹管的尺寸高度不宜太小,不利于饱满灌浆。例如目前采用的M15-4,其相应的扁波纹管内径为70×19mm,一般常采用的钢绞线直径为φ15.24mm,则可灌浆的间隙仅有3.76mm<<10.0mm(公路桥规JTJ023-85,第6.2.26条、四中要求:“管道的内径应比预应力钢筋外径至少大1.0cm”)。在宽度方向:70-4×15.24=9.04mm<10mm,其平均间隙为(70-4×15.24)/(4+1)=1.8mm。因此很难保证灌浆的饱满度和可靠握裹。在施工过程中扁波纹管的变形的可能性远大于圆波纹管。
2.扁波纹管的根数。在实际工程中常用的钢束根数为每管内4束或5束。其锚圈口的损失,5束应大于4束,远较圆锚时要大,其锚固效率系数也较难保证达到95%,同时在穿束过程中也极易绞缠在一起,因而建议,每管内3.0束合适,4.0束尚可,5.0束不妥。
3.扁锚用作横向预应力束合适;用作纵向受力主束欠妥,不应采用“扁锚竖置”作为纵向受力主束(弯起),这将会使实际有效预应力严重不足,各股钢束在竖置弯起的扁波纹管内互相嵌挤,摩阻损失很大,对扁波纹管的横向扩张力也很大,各束受力很不均匀,延伸率无法控制,这种‘“扁锚竖置”方案已有多座实桥失败,应该禁止采用。
九、关于钢铰线的弹性模量
Ey的的理论值为Ey=(1.9~1.95)×105Mpa,而在试验报告中常会出现Ey’=(2.04~2.06)×105Mpa的结果,如按Ey’=2.04×105Mpa计算张拉伸长量,则理论值与实际值的误差将达: ,这里已超过施工规范6%的误差范围了。其原因在于Ey= ,由于试验值中并未用真实的钢绞线面积Ay’代进上式计算,而是采用了理论值Ay(偏小值)代进上式计算Ey,从而得到了偏大的Ey’值。因而,在工程应用中的伸长值控制,必须按实测值Ey’控制,而不应是理论值Ey的计算伸长量。
十、锚头或齿板的压陷、压崩破坏
在工程中锚头或齿板压陷、压崩破坏,时有所见。值得注意者,局部受力的锚头或齿板的砼强度和配筋一般地安全储备较小,且由于该局部区内的配筋又较密,砼操作空间又较小,振捣工作又较困难,稍有疏忽,很易出现质量事故,所以在施工中应备加小心。