一、显示电路分析彩色显示器的显示电路主要由显像管的附属电路组成,其中包括对比度控制电路、消隐电路、亮度控制电路、消亮点电路、自动消磁电路、自动亮度控制电路等.显示电路的作用显像管的附属电路是保证显像管各电极的供电电压正常,才能使显像管正常工作。再通过对比度控制、消隐和亮度控制来显示彩色图像。 .对比度控制电路为了得到合适的图像就应调整对比度,调整加在显像管阴极的视频信号幅度。彩色显示器的对比度控制电路均放在视频信号处理电路中。目前流行的视频信号处理电路均采用集成电路,它们都具有对比度控制输入端。
.对比度控制电路为了得到合适的图像就应调整对比度,调整加在显像管阴极的视频信号幅度。彩色显示器的对比度控制电路均放在视频信号处理电路中。目前流行的视频信号处理电路均采用集成电路,它们都具有对比度控制输入端。
.消隐电路而逆程扫描是电子束的回扫,但回扫线的出现会严重影响屏幕的正常显示,因此必须加以消除,这就是消隐。消隐时,使显像管阴极不发射电子或少量电子打到荧光屏上,在正常亮度下,就不会出现回扫线。
行消隐信号一般由行输出变压器次级线圈中取出或由串联的行逆程电容之间取出。场消隐信号一般由场输出级取出。消隐电路一般采用栅极控制方式。
.亮度控制电路亮度控制就是控制显像管阴极发射电子的多少。显像管发射电子的数量是随显像管栅极(一般为负电压或0)与阴极(为正电压)之间的电位差(为负压)变化而变化的,电位差越小(即负压越小),发射电子越多,亮度越亮。反之则越暗。
多频数控彩显的亮度调整均采用栅极控制的方法。当采用控制栅极电压来改变亮度时,栅极加负电压(0-60V),这样调节范围大,视放电源电压低(小于120V)。
.消亮点电路当显示器电源关闭后,灯丝电压消失,但阴极不会立即冷却而继续发射电子,由于仍有一定高压,电子束仍会打到荧光屏上,所以屏幕中间有一个亮点,时间可长达数十秒钟。会烧坏荧光粉,形成一个黑点。目前常用截止型消亮点电路,这种电路是在关机后,使显像管的栅极加一个较大的负电压,电子束截止,这样关机后屏幕上就不会出现亮点了。
.自动消磁电路彩色显像管的荫罩板和防护框,是用铁类物质组成的。它易受外界磁场或内磁场磁化。显示器都设有自动消磁电路(ADC)。它由消磁线圈和一个具有正温度系数的热敏电阻PTC串联组成。消磁线圈安置在彩色显像屏幕的框边上。
二、显示电路的故障维修.光点给出的信息屏幕上有亮光即使是一个光点也表明来自阴极的电子束打到了屏幕的荧光粉层。这说明显像管具备了基本工作条件,显像管及各个电极的供电情况基本正常,中高压电路工作基本正常。
.色斑屏幕上出现不均匀的颜色块(部分偏色)。这类故障是显像管受到外围附加磁场影响的结果。例如,显像管附近有外磁式扬声器、消磁线圈工作失常等。显示器屏幕对称性均匀偏色一般由消磁电路自身损坏造成。显示器屏幕局部有不对称的色斑,这多是显示器外围强磁性物体磁化显像管铁构件的结果。
彩色显像管故障真空度不良。真空度不良的现象是管内出现蓝紫辉光或红辉光,甚至打火、聚焦不良、出现负像、亮度电位器开大时图像尺寸变大等,严重时会造成无光栅。这种故障通常是由显像管封口不好、高压阳极与锥体玻璃封接不严、管内吸气剂失效等造成。
电极断。彩色显像管断极通常是由电极引线与管脚或管帽脱开引起的。断极常发生在阴极和高压阳极等几个经常有较大电流流过的电极。当阴极断开时,会产生缺色故障;当高压阳极或加速阳极断极时,屏幕没有光栅;当栅极断开时,则亮度失控,而且有回扫线;当聚焦极断开时,屏幕图像模糊不清。
漏电或碰极。彩色显像管碰极常发生在阴极与灯丝之间,其次是栅极与阴极或加速极。因为灯丝一端往往接地,当阴极与灯丝碰极时,该阴极电位将明显下降,所以会使栅极与阴极间电位差变小,电子束大大增加,造成仅有该阴极的单色光栅。
老化。彩色显像管老化后,其阴极发射能力下降,故障现象是图像变淡、亮度变暗、聚焦变差、出负像等。如果是单个电子枪老化,则会造成偏色,失去白平衡,如红枪衰老偏青,蓝枪衰老偏黄,绿枪衰老偏紫。
通过测量CRT的阴极发射能力,可确定CRT是否老化。判断CRT阴极发射能力可采用测量CRT栅极与阴极间的电阻值的方法。测量时,首先拨下CRT管座和高压阳极插头,然后用额定交流电压点燃灯丝,再将万用表置R×1k档,黑表笔接栅极,红表笔接阴极。如果测得的阻值小于10kΩ,表示CRT发射能力正常;如果测得的阻值为十几千欧以上,则表示CRT已经老化。
老化后,可采用减小栅极-阴极间偏压、适当提高灯丝电压和对CRT重新激活的方法来提高亮度。
激活CRT的方法是:把灯丝电压加到9V左右,并在栅极加5V左右的正电压,保持5min后再重新恢复正常的工作状态。测量栅极与阴极的阻值,如减小则说明激活有效。
三、显示电路维修注意要点一、视频电路分析.视频电路作用及性能要求视频信号处理电路的主要作用是对显卡送来的R、G、B(约0.6Vpp左右)模拟量三基色信号进行放大、对比度控制、亮平衡和暗平衡调整等处理,将处理后的视频信号送到显像管的阴极。
视频电路原理分析图10-6为联想LX-S556D型多频数控彩显的视频电路,可见视频电路主要由两部分组成,一是以LMl203N或LM1279N等为核心构成的视频信号处理电路;二是由共射-共基三极管或以LM2439T为核心的高压视频放大输出电路。
视频信号处理电路一般由一块集成电路来完成,内部一般有完全相同的R、C、B三个视频通道,每个通道均由视频放大电路、对比度控制电路、黑电平钳位电路等组成。从显示卡送来的视频信号经信号放大及对比度控制、自动亮度限制等处理后再输入到视频输出电路。
基色视频信号经R804、C801加到LMl279N的3脚,由LMl279N进行放大,4脚上的C804为脉冲钳位电容,当11脚输入的钳位脉冲到来时,C804被充电,此时LMl279N才对视频信号进行放大。放大后的红视频信号由18脚输出,经R818加到视频输出电路。
的6脚为红信号增益控制端,VR801为红亮平衡调整电位器,调整VR801,可控制LMl279N的18脚红输出信号的幅度大小。LMl279N的第14脚为绿信号增益控制端,LMl279N的第12脚为:信号增益控制端,VR802为蓝亮平衡调整电位器,调整VR802,可控制LMl279N的13脚蓝输出信号的幅度大小。
的11脚为视频钳位脉冲输入脚,视频钳位脉冲由来自于微处理器NT68P61A输出的行同步信号经Q813、Q814放大后得到,如⑾脚没有钳位脉冲信号输入,显示器屏幕上将无光栅显示。
视频输出电路的主要作用是将视频信号处理电路输出的3~4V模拟信号进行放大,输出幅度约60V的模拟信号送人显像管阴极。视频输出电路和显像管阴极之间一般采用交流耦合方式。图10-6中LM2439T是具有9脚单列直插视频输出器芯片,其中9、6、7脚为R、C、B视频信号输入端(视频信号处理电路LMl279N的18、15、13脚输出),4脚接电源75V,5脚接地。1、2、3脚为视频信号输出端,分别输出到显像管的三个阴极。VR803、VR804、VR805为暗平衡调整电位器,调整VR803、VR804、VR805可控制显像管阴极电位的高低。