二阶分析与二阶效应 结构的非线性特性主要有:材料非线性、几何非线性和边界非线性等。所说的二阶效应属于几何非线性的范畴。与几何非线性有关的三种分析类型1: 小变形分析。平衡条件在结构变形前的位置构建,单元协调关系(位移函数)假定为线性。这是一种极端情况,条件是结构变形很小,因而可以忽略几何非线性的影响。 大变形分析。平衡条件在结构变形后的位置构建,单元协调关系(位移函数)为非线性。这也是另一种极端情况,结构变形大到一定程序,其几何非线性影响不可忽略。
结构的非线性特性主要有:材料非线性、几何非线性和边界非线性等。所说的二阶效应属于几何非线性的范畴。与几何非线性有关的三种分析类型1:
- 小变形分析。平衡条件在结构变形前的位置构建,单元协调关系(位移函数)假定为线性。这是一种极端情况,条件是结构变形很小,因而可以忽略几何非线性的影响。
- 大变形分析。平衡条件在结构变形后的位置构建,单元协调关系(位移函数)为非线性。这也是另一种极端情况,结构变形大到一定程序,其几何非线性影响不可忽略。
- P-Δ分析。平衡条件在结构变形后的构建(通过一些近似处理),单元协调关系(位移函数)假定为线性。这是一种中间情况,近似考虑了几何非线性的影响。
二阶效应的表现形式
建筑结构中的二阶效应有两种表现形式:P-Δ效应和P-δ效应。看一个简单的悬臂柱的例子:
下端固定顶端自由的悬臂柱,高度h,柱顶受竖直向下的荷载P和侧向荷载H共同作用,侧向荷载使柱顶发生了Δ的水平位移。当不考虑几何非线性(一阶分析)时,柱子的弯矩图为直线分布,柱底弯矩最大为$Hh$;实际上,由于柱顶发生了Δ的水平位移,在变形后的位置构建平衡条件可知,柱底弯矩将变化$Hh+PΔ$,弯矩图分布仍为直线,这增加的部分弯矩即为P-Δ效应;另一方面,柱子轴向力作用下会发生自身的弯曲变形,其中部偏离中心轴,同样在变形后的位置构建平衡条件,可知在P作用下柱子内部的弯矩将进一步增大,弯矩增大的数值在柱子顶端和底端为0,中部最大,承曲线分布,这部分增加的弯矩即为P-δ效应。
对于很多根柱子的建筑结构,当忽略梁的轴向变形时,同一楼层柱子的柱顶位移Δ将一致的,而均匀的竖向荷载(如自重)作用下每根柱子上的P也基本一样,那么每根柱子上的P-Δ效应也会一样。很明显,P-Δ效应是结构整体级别的,而P-δ效应仅是构件本身级别的。
P.S:Powell教授的《Modeling for structural Analysis》是一本很好的书,仔细读读能搞清楚很多基本概念,值得悉心研读。
- Graham H. Powell. Modeling for Structural Analysis[M]. Computers and Structures Inc., 2010. ↩