对结构概念设计的认识(二)
无间道
无间道 Lv.18
2014年06月18日 10:47:53
只看楼主

3 协同工作与材料利用率  协同工作设计的另一个目的 ,还在于对材料的充分利用。一般来讲 ,材料利用率越高 (即应力水平越高 ),该结构的协同工作程度也越高 (从优化设计的角度 ,尽管结构性能最好的方案 ,不一定是材料利用率最高 ),尤其对我国这样一个发展中国家 ,结构设计的目的即是花最少的钱 ,做最好的建筑 ,这就要求设计时对结构材料的充分利用 ,这从梁类构件的演变可以看出。矩形截面梁是最普通的受弯构件 ,它的材料利用率很低 ,原因有二 :一方面是靠近中和轴的材料应力水平低 ,另一方面是梁的弯矩沿梁长一般是变化的 ,这样对等截面梁来说 ,大部分区段 ,即使是拉、压边缘 ,其应力水平均较低。针对梁的这种受力特点 ,用结构概念分析 ,主要是因为梁截面存在应变梯度 ,只有当构件是轴心受力时 ,材料利用率才可能增大 ,于是就出现了平面桁架 ,平面桁架可以理解成“掏空”的梁———将梁中多余材料去除 ,既经济 ,又降低自重 ;故桁架的上弦相应于梁的受压边 ,下弦相应于受拉钢筋。规则桁架中腹杆的受力 (拉、压 )与梁中主拉、压应力方向一致 ,根据上述分析 ,还可以将桁架的外形设计为与弯矩图相似的形状 ,从而使桁架的弦杆受力均匀。由于桁架中大量存在压杆 ,压杆的强度往往由其稳定性决定 ,而不是由杆件截面材料强度决定 ,因此 ,在平面桁架的设计过程中 ,应设法降低压杆的长细比。单纯增大截面是下策 ,特别是上弦杆 ,应努力增加其平面外的刚度 (有时上弦采用双杆形成的复合压杆 ),提供平面外约束 (增加支撑 ),如果把这些平面外的支撑再连接成桁架 ,这样就使平面桁架变为平面交叉桁架 ,最后发展为空间网架。空间网架的材料利用率高 ,应力水平高 ,故在大跨度、大空间结构中广泛使用 ,但网架结构中仍然存在压杆 ,压杆 (特别是钢压杆 )的应力水平不可能太高(因为随着跨度的增加 ,网架的高度增大 ,腹杆的长度将增大 ,同时节点距离的增大也导致弦杆长度的增大 ),这样高强材料就不能使用。因此 ,努力减少或消除结构中的压杆 ,就使我们找到了悬索结构 ,悬索结构中所有的“杆件”均为拉杆 ,这样就使悬索结构中杆件的应力水平极高 ,材料利用率极大 ,高强材料得以充分利用 ,还可施加预应力。因而在超大跨度的结构中 ,悬索结构 (或包括悬索结构的组合结构 )是首选的结构类型。就混凝土基本理论的发展来看 ,也体现了使各种材料充分发挥性能 ,并相互协同工作的特点。林同炎教授认为 :钢筋混凝土与预应力混凝土之间的区别在于钢筋混凝土是将混凝土与钢筋两者简单地结合在一起 ,并让他们自行地共同工作 ,预应力混凝土是将高强钢筋与高强混凝土能动地结合在一起 ,使两种材料均产生非常好的性能。反映了人们对混凝土中的协同工作认识和运用过程的加深。目前广泛使用的钢 -混凝土结构 ,是将钢结构与混凝土结构相互取长补短形成的一种新型的结构形成。尤其是钢管混凝土 ,与预应力混凝土相似 ,更将这两种材料能动地结合起来 ,实现了结构材料的又一次革命。钢管混凝土的原理有二 :

3 协同工作与材料利用率
  协同工作设计的另一个目的 ,还在于对材料的充分利用。一般来讲 ,材料利用率越高 (即应力水平越高 ),该结构的协同工作程度也越高 (从优化设计的角度 ,尽管结构性能最好的方案 ,不一定是材料利用率最高 ),尤其对我国这样一个发展中国家 ,结构设计的目的即是花最少的钱 ,做最好的建筑 ,这就要求设计时对结构材料的充分利用 ,这从梁类构件的演变可以看出。矩形截面梁是最普通的受弯构件 ,它的材料利用率很低 ,原因有二 :一方面是靠近中和轴的材料应力水平低 ,另一方面是梁的弯矩沿梁长一般是变化的 ,这样对等截面梁来说 ,大部分区段 ,即使是拉、压边缘 ,其应力水平均较低。针对梁的这种受力特点 ,用结构概念分析 ,主要是因为梁截面存在应变梯度 ,只有当构件是轴心受力时 ,材料利用率才可能增大 ,于是就出现了平面桁架 ,平面桁架可以理解成“掏空”的梁———将梁中多余材料去除 ,既经济 ,又降低自重 ;故桁架的上弦相应于梁的受压边 ,下弦相应于受拉钢筋。规则桁架中腹杆的受力 (拉、压 )与梁中主拉、压应力方向一致 ,根据上述分析 ,还可以将桁架的外形设计为与弯矩图相似的形状 ,从而使桁架的弦杆受力均匀。由于桁架中大量存在压杆 ,压杆的强度往往由其稳定性决定 ,而不是由杆件截面材料强度决定 ,因此 ,在平面桁架的设计过程中 ,应设法降低压杆的长细比。单纯增大截面是下策 ,特别是上弦杆 ,应努力增加其平面外的刚度 (有时上弦采用双杆形成的复合压杆 ),提供平面外约束 (增加支撑 ),如果把这些平面外的支撑再连接成桁架 ,这样就使平面桁架变为平面交叉桁架 ,最后发展为空间网架。空间网架的材料利用率高 ,应力水平高 ,故在大跨度、大空间结构中广泛使用 ,但网架结构中仍然存在压杆 ,压杆 (特别是钢压杆 )的应力水平不可能太高(因为随着跨度的增加 ,网架的高度增大 ,腹杆的长度将增大 ,同时节点距离的增大也导致弦杆长度的增大 ),这样高强材料就不能使用。因此 ,努力减少或消除结构中的压杆 ,就使我们找到了悬索结构 ,悬索结构中所有的“杆件”均为拉杆 ,这样就使悬索结构中杆件的应力水平极高 ,材料利用率极大 ,高强材料得以充分利用 ,还可施加预应力。因而在超大跨度的结构中 ,悬索结构 (或包括悬索结构的组合结构 )是首选的结构类型。就混凝土基本理论的发展来看 ,也体现了使各种材料充分发挥性能 ,并相互协同工作的特点。林同炎教授认为 :钢筋混凝土与预应力混凝土之间的区别在于钢筋混凝土是将混凝土与钢筋两者简单地结合在一起 ,并让他们自行地共同工作 ,预应力混凝土是将高强钢筋与高强混凝土能动地结合在一起 ,使两种材料均产生非常好的性能。反映了人们对混凝土中的协同工作认识和运用过程的加深。目前广泛使用的钢 -混凝土结构 ,是将钢结构与混凝土结构相互取长补短形成的一种新型的结构形成。尤其是钢管混凝土 ,与预应力混凝土相似 ,更将这两种材料能动地结合起来 ,实现了结构材料的又一次革命。钢管混凝土的原理有二 :
  1 )借助钢管对核心混凝土的约束 ,使核心混凝土有更高的强度和变形能力 ;
  2 ) 核心混凝土又对钢管壁的稳定提供了有效可靠的支撑。钢管混凝土的极限承载力远大于钢管和核心混凝土两者的承载力之和 ,约为两者之和的 1 7~ 2 0 倍 ,其极限变形能力是普通钢筋混凝土的几倍甚至几十倍 ,这是钢材与混凝土的又一次理想结合。它的出现 ,使传统意义上的受压破坏特征由脆性变为延性 ,对结构抗震的延性设计意义巨大 ,也使超高层建筑底层柱的轴压比限制问题迎刃而解。从上述结构构件的演化 ,推而广之 ,在结构设计中 ,只有当构件越多处于轴心受力状态 ,其材料的利用率才可以高 ,经济性也就越好。对框架结构 ,竖向载作用下 ,框架柱宜处于小偏心受压下工作 ,若大量柱处于大偏心受压工作状态 ,则该结构方案的经济性一般不好 ,故对非地震区的框架结构 ,其框架柱应优先设计为小偏心受压。这里就出现了一个矛盾 , 在地震作用下 ,大部分柱可能处于大偏心受压状态工作 ,截面设计时 ,大量柱的配筋仅仅是为万一发生地震而增加的 ,这些钢材在不发生地震时 ,将不起丝毫作用 ,这显然是不经济的 ,与抗震设计的整体思想也不相符。为避免这种现象的出现 ,一方面应设法加强结构整体性 ,必要时 ,在某些楼层设置刚性转换层 ,从而加大整体弯矩 ,减小引起柱弯曲变形的局部弯矩 ;另一方面 ,对柱的设计 ,可将整个楼层面的柱设计为多肢柱 ,使多肢柱的每一根杆件都能处于轴心受力状态 ,如对钢管混凝土柱 ,只有在小偏心受压(或接近轴压 )时 ,钢管和核心混凝土才能更好地协同工作 ,在偏心距较大的受压构件中使用时 ,更宜将其设计成双肢、三肢或四肢组成的组合构件。
4 控制的七个比值及调整方法
高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:
4.1轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求。轴压比不满足时的调整方法:
4.1.1程序调整:SATWE程序不能实现。
4.1.2人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
4.2剪重比:主要为控制各楼层最小地震剪力,确保结构安全性。这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:
4.2.1程序调整:在SATWE的“调整信息”中勾选“按抗震规范调整各楼层地震内力”后,SATWE按抗规自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
4.2.2人工调整:如果还需人工干预,可按下列三种情况进行调整:
a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;
b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;
c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
4.3刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,对于形成的薄弱层则按高规予以加强。
刚度比不满足时的调整方法:
4.3.1程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规将该楼层地震剪力放大1.15倍。
4.3.2人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
4.4位移比:主要为控制结构平面规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。
位移比不满足时的调整方法:
4.4.1程序调整:SATWE程序不能实现。
4.4.2人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;可利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度;也可找出位移最小的节点削弱其刚度;直到位移比满足要求。
4.5周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,见高规4.3.5。周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,结构扭转效应过大。
周期比不满足时的调整方法:
4.5.1程序调整:SATWE程序不能实现。
4.5.2人工调整:只能通过人工调整改变结构布置,提高结构的扭转刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度。
第一或第二振型为扭转时的调整方法:
a)SATWE程序中的振型是以其周期的长短排序的。
b)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。“结构在两个主轴方向的动力特性(周期和振型)宜相近”。
c)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(一般都靠近X轴和Y轴)方向的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。
d)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(侧移刚度较小方向)的侧移刚度是合理的;但相对于另一主轴(侧移刚度较大方向)的侧移刚度则过小,此时宜适当加强结构外围(主要是沿侧移刚度较大方向)的刚度,并适当削弱结构内部沿侧移刚度较大方向的刚度。
e)在进行上述调整的同时,应注意使周期比满足规范的要求。
f)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。
4.6刚重比:主要为控制结构的稳定性,避免结构在风载或地震力的作用下整体失稳,刚重比不满足要求,说明结构的刚度相对于重力荷载过小;但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
刚重比不满足时的调整方法:
4.6.1程序调整:SATWE程序不能实现。
4.6.2人工调整:只能通过人工调整改变结构布置,加强墙、柱等竖向构件的刚度。
4.7层间受剪承载力比:控制竖向不规则性,以免竖向楼层受剪承载力突变,形成薄弱层,见抗规3.4.2,高规4.4.3;对于形成的薄弱层应按高规5.1.14予以加强。
层间受剪承载力比不满足时的调整方法:
4.7.1程序调整:在SATWE的“调整信息”中的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,SATWE按高规5.1.14将该楼层地震剪力放大1.15倍。
4.7.2人工调整:如果还需人工干预,可适当提高本层构件强度(如增大配筋、提高混凝土强度或加大截面)以提高本层墙、柱等抗侧力构件的承载力,或适当降低上部相关楼层墙、柱等抗侧力构件的承载力。
如果结构竖向较规则,第一次试算时可只建一个结构标准层,待结构的周期比、位移比、剪重比、刚度比等满足之后再添加其它标准层;这样可以减少建模过程中的重复修改,加快建模速度。
免费打赏
2014年06月18日 14:33:06
2楼
感谢楼主 学习了……
回复
aunique
2014年06月20日 15:42:24
5楼

很重要的东西,共同学习
回复
zyhjg97
2014年06月24日 10:47:01
6楼
不错的资料,谢谢分享。
回复
鲁烟半岛epc
2014年07月18日 08:53:05
7楼
怎么不卖钱了 呵呵 呵呵
回复
宁静的致远
2014年07月31日 16:32:14
8楼
谢谢楼主,非常有用,受益无穷
回复
nszaiplt1314
2014年07月31日 16:51:39
9楼
学习!!~~~~~~~
回复
小朱123
2014年08月01日 09:33:26
10楼
学习学习!!!
回复
ywz85
2014年08月01日 16:13:01
11楼
很赞。:lol
回复
攻城师64581
2014年12月18日 11:06:13
12楼
说的太棒了
回复
sheji916176484
2015年01月12日 14:20:18
13楼
全是附件资料,楼主你拿点实际项目的经验出来不更好!
回复

相关推荐

APP内打开