人工林树种(组)多源遥感 分类技术
成果背景
人工林小班树种(组)(简称人工林类型)专题信息是编制森林资源经营方案,提高经营管理决策水平的基础数据。但现有小班人工林类型遥感分类方法通常只将森林类型分为针叶、阔叶和混交等几个大类,可区分类别较粗,分类的自动化程度和精度都有待提高。研发高精度、高效率的人工林类型多源遥感精细分类方法,对完善现有森林资源监测技术体系具有重要意义。
(1)提出了一种基于自动分层和关键特征变量选取的决策树分类方法,山地试验区分类总精度达85.2%,比随机森林和分类回归决策树分别提高了4.8%和9.5%;在平原试验区,分类总精度达到97.3%。
(2)针对全色和多光谱卫星遥感空间分辨率高、光谱/时相分辨率较低特点,提出了一种深度学习集成分类方法:双支FCN8s-CRFasRNN,采用迁移学习思路缓解小样本问题,并将无人机数码影像解译引入分类框架,解决了高质量大样本地面实况数据不容易获取问题。山地试验区总精度达到90.1%,比传统支持向量机分类方法精度提高10%以上。
(3)针对机载高光谱影像,创新了机载高光谱人工林类型深度学习树种分类方法3D-1D-CNN。在广西高峰林场试验区,采用125波段1m分辨率机载高光谱数据,实现了小样本(分类模型训练可用样本稀少)高精度树种分类,人工林树种分类精度达到93.9%;提出了机载高光谱人工林类型小样本深度学习树种分类方法IPrNet原型网络,有限训练样本情况下,树种类型分类精度达到98.6%。
已在内蒙古赤峰市、广西南宁市、安徽利辛县、北京延庆区、福建等地示范应用达395.36k㎡,有效提升了森林类型分类的详细程度和精度,提高了森林、湿地、自然保护地等资源调查监测业务的效率和监测成果质量,对人工林资源科学化经营决策具有重要支撑作用。
该技术有利于降低二类调查、林地一张图年度更新、森林资源一张图年度调查等业务对人工目视解译的依赖程度,可推广应用于湿地、自然保护地等资源调查监测业务,提高调查监测效率和成果质量。