集控运行140个知识点
有爱心的灌汤包
2022年12月05日 10:00:24
只看楼主

1 、在什么情况下应 紧急故障停机?       

1 、在什么情况下应 紧急故障停机?       

在下列况下应紧急故障停机:

(1)  汽轮发电机组任一轴承振动达紧急停机值。

(2)  汽轮发电机组内部有明显的金属摩擦声和撞击声。

(3)  汽轮机发生水冲击,或主、再热蒸汽温度10min内急剧下降50℃。

(4)  汽轮发电机组任一轴承断油、冒烟或轴承回油温度突然上升至紧急停机值。

(5)  轴封内冒火花。

(6)  汽轮机油系统着火,不能很快扑灭,严重威胁机组安全运行。

(7)  发电机或励磁机冒烟着火或氢系统发生爆炸。

(8)  汽轮机转速升高到危急保安器动作转速(3330r/min)而危急保安器未动作。

(9)  汽轮机任一轴承金属温度升高至紧急停机值。

(10) 润滑油压力下降至紧急停机值,虽经启动交直流润滑油泵仍无效。

(11) 汽轮机主油箱油位突降至紧急停机值,虽加油仍无法恢复。

(12) 汽轮机轴向位移达紧急停机值。

(13) 汽轮机胀差达紧急停机值。


2 、叙述汽轮机发生水冲击的现象及运行处理原则。

现象:

(1)  主蒸汽或再热蒸汽温度直线下降。

(2)  蒸汽管道有强烈的水冲击声或振动

(3)  主汽门、调速汽门的门杆、法兰、轴封处冒白汽或溅出水滴。

(4)  负荷下降,机组声音异常,振动加大。

(5)  轴向位移增大,推力轴承金属温度升高,胀差减小。

(6)  汽机上、下缸金属温差增大或报警。

处理原则:

(1)  机组发生水冲击,应按破坏真空紧急停机处理。

(2)  注意汽机本体及有关蒸汽管道疏水门应开启。

(3)  注意监视轴向位移、胀差、推力轴承金属温度、振动等参数。

(4)  仔细倾听汽轮发电机内部声音,准确记录惰走时间。

(5)  如因加热器、除氧器满水引起汽机进水,应立即关闭其抽汽电动门,解列故障加热器并加强放水。

(6)  若汽轮机进水,使高、中压缸各上、下金属温差超标时,应立即破坏真空,紧急停机。

(7)  汽机转速到零后,立即投入连续盘车。

(8)  投盘车时要特别注意盘车电流是否增大,记录转子偏心度。转子变形严重或内部动静部分摩擦,盘车盘不动时,严禁强行盘车。

(9)  机组发生水冲击紧急停机后,24小时内严禁启动;再次启动前连续盘车不少于6小时,汽缸上、下缸温、转子偏心度符合要求。

(10) 汽机符合启动条件后启动汽机,在启动过程中,应注意监视转子偏心度、轴向位移、胀差、推力轴承金属温度、振动等符合控制指标及汽机本体、蒸汽管道的疏水情况;

(11) 如汽机重新启动时发现有异常声音或动静摩擦声,应立即破坏真空停机并逐级汇报。

(12) 惰走过程中,如汽机轴向位移、胀差、振动、推力轴承金属温度及回油温度明显升高,惰走时间明显缩短,应逐级汇报,根据推力瓦情况决定是否揭缸检查,否则不准启动。

(13) 如果停机时发现汽轮机内部有异常声音和转动部分有摩擦,则应揭缸检查。


3 、发生水冲击的原因有哪些?

发生水冲击的原因有:

(1)  锅炉蒸发量过大或不均匀,化学水处理不当引起汽水共腾。

(2)  锅炉减温减压阀泄漏或调整不当,汽压调整不当。

(3)  启动过程中升压过快,或滑停过程中降温速度过快,使蒸汽过热度降低,甚至接近或达到饱和温度,导致蒸汽带水。

(4)  运行人员误操作以及给水调节器的原因造成锅炉满水。

(5)  汽轮机启动过程中,暖管时间不够,疏水不尽。

(6)  再热蒸汽冷段采用喷水减温时由于操作不当或阀门不严,减温水积存在再热蒸汽冷段管内或倒流入高压缸中,当机组启动时积水被蒸汽带入汽轮机内。

(7)  汽轮机回热系统加热器水位高,且水位保护装置失灵,使水经抽汽管道返回汽轮机内造成水冲击。

(8)  除氧器发生满水,使水经汽平衡管进入轴封系统。

(9)  启动时轴封管道系统未能充分暖管和疏水,也可能将积水带到轴封内,停机时切换备用轴封汽源,因处理不当使轴封供汽带水。

4 、汽轮机发生水冲击的危害有哪些?

汽轮机发生水冲击的危害有:

(1)  动静部分摩、碰。汽轮机进冷水或冷蒸汽使高温下的金属部件突然冷却而急剧收缩,产生很大的热变形,使相对膨胀急剧变化,机组产生强烈的振动。动、静部分轴向和径向摩、碰,径向摩、碰时会产生大轴弯曲。

(2)  叶片的损伤和断裂。进入汽轮机的通流部分水量较大时,造成叶片的损伤和断裂,特别是对较长的叶片。

(3)  推力瓦烧毁。进入汽轮机的水或冷蒸汽的密度比蒸汽的密度大得多,因而在喷嘴内不能获得和蒸汽同样的加速度,使其相对速度的进汽角远大于蒸汽相对速度的进汽角,汽流不能按正确的方向进入汽流通道,而对动叶进口边的背弧产生冲击。这除了使动叶产生制动力外,还产生一轴向推力,使汽轮机轴向推力增大。实际运行中汽轮机的轴向推力可增大到正常运行时的10倍。使推力轴承超载而导致钨金烧毁。

(4)  阀门或汽缸结合面漏汽。若阀门和汽缸受到急剧冷却,会使金属产生永久变形。导致阀门或汽缸结合面漏汽。

(5)  引起金属裂纹。机组启、停时,如果经常进冷水或冷蒸汽,金属在频繁交变的热应力作用下,会出现裂纹,如果汽封处的转子表面受到汽封供汽系统来的水或冷蒸汽的反复冷却,就会出现裂纹并不断扩大。

5 、轮机叶片断裂的现象有哪些?运行中为防止叶片损坏应采取哪些措施?

叶片断裂的现象有现象:

(1)  汽轮机内或凝结器内产生突然声响。

(2)  机组突然振动增大或抖动。

(3)  当叶片损坏较多时,若要维持负荷不变,则应增加蒸汽流量,即增大调门开度。

(4)  断叶片落入凝结器时打坏冷却水管,凝结器水位升高,凝结水导电度增大,凝结水泵电流增大。

(5)  断叶片进入抽汽管道可能造成阀门卡涩。

(6)  在惰走、盘车状态下,可听到金属摩擦声。

(7)  运行中级间压力升高。

为防止叶片损坏应采取如下措施:

(1)  电网应保持正常频率运行,避免频率偏高偏低引起某几级叶片进入共振区。

(2)  运行中保持蒸汽参数和各监视段压力、真空等在在正常范围内,超过极限值应限负荷运行。

(3)  加强汽、水的化学监督。

(4)  运行中加强对振动的监视,防止汽机因进冷水冷汽或其他原因导致受热不均变形、动静间隙减小引起局部碰磨。

(5)  机组大修中应对通流部分损伤情况进行全面细致地检查,做好叶片、围带、拉筋的损伤记录,做好叶片的调频工作。

6 、大轴弯曲的主要原因有哪些?防止大轴弯曲的主要措施有哪些?

运行中出现大轴弯曲的主要原因有:

(1)  由于动静摩擦,使转子局部过热,产生压缩应力,出现塑性变形。在转子冷却后,受到残余拉应力的作用,造成大轴弯曲。

(2)  汽机进冷汽、冷水,转子受冷部位产生拉应力,出现塑性变形,造成大轴弯曲。

(3)  轴封系统故障,冷空气进入汽缸,转子急剧冷却,使动静间隙消失产生摩擦造成大轴弯曲。

(4)  轴瓦或推力瓦磨损,使轴系轴心不一致造成动静摩擦产生弯曲事故。

防止大轴弯曲的措施:

(1)  启动前重点检查以下阀门,使其处于正确位置:

(2)  高压旁路减温水隔离门、调整门应关闭严密;所有汽轮机蒸汽管道,本体疏水门应全部开启;通向锅炉的减温水门,给水泵的中间抽头门应关闭严密,等锅炉需要后再开启;各水封注完水后应关闭注水门,防止水从轴封加热器倒至汽封。

(3)  启动机组前一定要连续盘车2小时以上,热态启动必须连续盘车4小时以上,不得间断,并测量转子弯曲值不大于原始值0.02mm。

(4)  冲转前应对主蒸汽管道、再热蒸汽管道和各联箱充分暖管暖箱。

(5)  冲转过程中应严格监视机组各轴承振动。转速在1300r/min以下,轴承振动不得超过0.03mm,通过临界转速时轴承振动不得超过0. 1mm,否则立即打闸停机,停机后测量大轴弯曲,并连续盘车4小时以上,正常后才能开机。若有中断,必须重新计时盘车。

(6)  冲转达3000r/min后应关小电动主汽门后疏水门,防止疏水量太大影响本体疏水畅通。

(7)  在投蒸汽加热装置后要精心调整,不允许汽缸法兰上下、左右温差交叉变化,各项温差应在允许范围内。

(8)  当锅炉燃烧不稳定时,应严格监视主蒸汽、再热蒸汽温度的变化,10min内主蒸汽或再热蒸汽温度下降50℃,应打闸停机。

(9)  停机过程中应加强各水箱、加热器水位的监视,防止水或冷汽倒至汽缸。

(10) 低负荷时应调整好凝结水泵的出口压力不得超过规定值,防止低压加热器钢管破裂。

(11) 投高压加热器前一定要做好各项保护试验,使高压加热器保护正常投入运行,否则不得投入高压加热器。

(12) 热态启动不得使用减温水。

7 、防止轴承损坏的主要措施有:

(1)  加强油温、油压的监视调整,定期校验油位计、油压表、油温表。

(2)  油净化装置运行正常,定期化验油质,油质应符合标准。

(3)  严密监视轴承乌金温度,发现异常应及时查找原因并消除。

(4)  油系统设备自动及备用可靠,并进行严格的定期实验。

(5)  运行中的油泵或冷油器的投停切换应平稳谨慎,进行充分的放空气,严防断油烧瓦。

(6)  注意监视机组的振动、串轴、胀差。防止汽轮机进水、大轴弯曲、轴承振动及通流部分损坏导致轴瓦磨损。

(7)  汽轮发电机转子应可靠接地。

(8)  启动前应认真按设计要求整定交、直流油泵的联锁定值,检查接线正确。

(9)  油系统阀门不得垂直布置,大修完毕油系统应进行清理。

(10) 运行中经常检查主油箱、高位油箱、油净化、密封油箱的油位,滤油机运行情况。发现主油箱油位下降快,补油无效时,应立即启动直流润滑油泵停机。

(11) 直流润滑油泵电源保险应有足够的容量并可靠。


                         

8 、汽轮机超速的主要原因及处理原则是什么?

汽轮机超速的主要原因有:

(1)  发电机甩负荷到零,汽轮机调速系统工作不正常。

(2)  危急保安器超速试验时转速失控。

(3)  发电机解列后高、中压主汽门或调速汽门、抽汽逆止门等卡涩或关闭不到位。

(4)  汽轮机转速监测系统故障或失灵。

汽轮机超速的处理原则:

(1)  立即破坏真空紧急停机,确认转速下降。

(2)  如发现转速继续升高,应采取果断隔离及泄压措施。

(3)  查明超速原因并消除故障,全面检查确认汽轮机正常方可重新启动,应经校验危急保安器及各超速保护装置动作正常方可并网带负荷。

(4)  重新启动过程中应对汽轮机振动、内部声音、轴承温度、轴向位移、推力瓦温度等进行重点检查与监视,发现异常应停止启动。

9 、防止汽轮机超速的措施有哪些?

防汽轮机超速的技术措施有:

(1)  各超速保护装置均应完好并正常投入且工作正常。

(2)  在正常参数下调节系统应能维持汽轮机在额定转速下运行。

(3)  在额定参数下,机组甩去额定负荷后,调节系统应能将机组转速维持在危急保安器动作转速以下。

(4)  调节系统的速度变动率不大于5%,迟缓率不大于0.2%。

(5)  高中压自动主汽门及调速汽门应能迅速关闭严密,无卡涩。

(6)  调节保安系统的定期试验装置应完好可靠。

(7)  坚持做调节系统的静态特性试验,汽轮机大修后或调速系统检修后,均应做汽轮机调节系统试验。

(8)  对新装机组或对机组的调节系统进行技术改造后,应进行调节系统动态特性试验,以保证汽轮机甩负荷后,转速飞升不超过规定值。

(9)  机组大修或安装后、危急保安器解体或调整后、停机一个月以后再次启动时、机组甩负荷试验前,都应做超速试验。

(10) 机组每运行2000小时后应进行危急保安器充油试验,试验不合格时,仍需做超速试验。

(11) 做超速试验时应选择适当参数,压力、温度应控制在规定范围,投入旁路系统,待参数稳定后,方可做超速试验。

(12) 做超速试验时,调节汽门应平稳逐步开大,转速相应逐步升高至危急保安器动作转速,若调节汽门突然开至最大,应立即打闸停机,防止严重超速事故。

(13) 按规定定期进行自动主汽门、调节气门的活动试验,以及抽汽逆止门的活动试验。

(14) 运行中发现主汽门、调节汽门卡涩时,要及时消除汽门卡涩,消除前要有防止超速的措施,主汽门卡涩不能立即消除时,要停机处理。

(15) 加强对油质的监督,定期进行油质的分析化验,防止油中进水或杂物造成调节部套卡涩或腐蚀。

(16) 加强对蒸汽品质的监督,防止蒸汽带盐使门杆结垢造成卡涩。

(17) 运行人员要熟悉超速象征,严格执行紧急停机规定。

(18) 机组长期停运时,应注意做好停机保护工作,防止汽水或其他腐蚀性物质进入或残留在汽轮机及调节供油系统内,引起气门或调节部套锈蚀。

(19) 机组大修后应进行汽门严密性试验,试验标准和方法应按制造厂的规定执行,运行中汽门严密性试验应每年进行一次。

(20) 在汽轮机运行中,注意检查调门的开度和负荷对应关系以及调节汽门后的压力变化情况,若有异常,及时查找并分析原因。

(21) 为防止大量的水进入油系统中,应加强监视和调整汽封压力不要过高,前箱,轴承箱内的负压也不宜过高。

(22) 采用滑压动行的机组以及在机组滑参数启动过程中,调节汽门要留有裕度,不应开到最大限度,以防发生甩负荷超速。

(23) 在停机时,应先打危急保安器,关闭主汽门和调节汽门,采用逆功率联跳发电机,但也应注意发电机解列至打闸的时间拖得太长,因这时属于无蒸汽动行状态,时间过长,会使排汽缸温度升高,胀差增大。

10 、热态启动时,防止转子弯曲应特别注意哪些方面?

热态启动除作好开机前有关防止转子弯曲的措施之外,还应做好以下工作:

(1)  热态启动前,负责启动的班组应了解上次停机的情况,有无异常,应注意哪些问题,并对每个操作人员讲明,做到人人心中有数。

(2)  热态启前,转子要连续盘车4小时以上,测量转子晃动不大于原始值0.02mm。

(3)  一定要先送轴封汽后抽真空。

(4)  各管道、联箱应更充分地暖管、暖箱。

(5)  严格要求冲转参数和旁路的开度(旁路要等凝汽器有一定的真空才能开启),主蒸汽温度一定要比高压内上缸温度高80~100℃,并有50℃以上的过热度。冲转和带负荷过程中也应加强主、再热蒸汽温度的监视,汽温不得反复升降。

(6)  加强振动的监视。热态启动过程中,由于各部件温差的原因,容易发生振动,这时更应严格监视。振动超过规定值应立即打闸停机。

(7)  开机过程中,应加强各部分疏水。

(8)  应尽量避开极热态启动。

(9)  热态启动前应对调节系统赶空气,因为调节系统内存有空气,有可能造成冲转过程中调节汽门大幅度移动,引起锅炉参数不稳定,造成蒸汽带水。

(10) 极热态启动时不能做超速试验。

(11) 热态启动时,应尽快带负荷至汽缸温度相对应的负荷水平。


                         

11、 一般在哪些情况下禁止启动或运行汽轮机?

一般在下列情况下禁止运行或启动汽轮机:

(1)  危急保安器动作不正常。

(2)  自动主汽门、调速汽门、抽汽逆止门卡涩不能严密关闭,自动主汽门、调速汽门严密性试验不合格。

(3)  调速系统不能维持汽轮机空负荷运行(或机组甩负荷后不能维持转速在危急保安器动作转速之内)。

(4)  汽轮机转子弯曲值超过规定。

(5)  高压内缸上下缸温差大于35℃,高中压外缸上下温差大于50℃。

(6)  盘车时发现机组内部有明显的摩擦声时。

(7)  任何一台油泵或盘车装置失灵时。

(8)  油压不合格或油温低于规定值。

(9)  油系统充油后油箱油位低于规定值时。

(10) 汽轮机各系统中有严重泄漏。

(11) 保温设备不合格或不完整时。

(12) 保护装置(低油压、低真空、轴向位移保护等)失灵和主要电动门(如电动主汽门、高加进汽门、进水门等)失灵时。

(13) 主要仪表失灵,包括转速表、挠度表、振动表、热膨胀表、胀差表、轴向位移表、调速和润滑油压表、密封油压表推力瓦块和密封瓦块温度表,氢油压差表、氢压表、冷却水压力表、主蒸汽或再热汽压力表和温度表、汽缸金属温度、真空表等。

12、 防止汽轮机轴瓦损坏的主要技术措施有哪些?

防止汽轮机轴瓦损坏的主要技术措施有:

(1)  油系统各阀门应有标示牌,油系统切换工作按规程进行。

(2)  润滑油系统阀门采用明杆或有标尺。

(3)  高低压供油设备定期试验。

(4)  润滑油压应以汽轮机中心线距冷油器最远的轴瓦为准。

(5)  直流油泵电源熔断器宜选用较高的等级。

(6)  汽轮机定速后停止油泵运行时应注意油压的变化。

(7)  油箱油位应符合规定。

(8)  润滑油压应符合设计值。

(9)  停机前应试验润滑油泵正常后方可停机。

(10) 严格控制油温。

(11) 汽轮机任一轴承断油冒烟或轴承回油温度突然上升至紧急停机值时应紧急停机。

13 、 在哪些情况下汽轮机不破坏真空故障停机?

(1)  真空降至规定值,负荷降至零仍无效。

(2)  额定汽压时,主蒸汽温度升高至最大允许值。

(3)  主、再热汽温度过低。

(4)  主蒸汽压力上升至最大允许值。

(5)  发电机断水超过规定值,断水保护拒动。

(6)  厂用电全部失去。

(7)  主油泵出现故障,不能维持正常时。

(8)  氢冷系统大量漏氢,发电机内氢压无法维持。

(9)  凝结水管破裂,除氧器水位无法维持。

(10) 凝汽器冷却水管泄漏,循环水漏入汽侧。

14、为防止汽轮机动静摩擦,运行操作上应注意哪些问题?

注意以下几点:

(1)  每次启动前必须认真检查大轴的晃动度,确认大轴挠度在允许的范围以内才可进行启动。

(2)  上、下汽缸温差一定要在规定的范围以内。如果上下汽缸温差过大,将使汽缸产生很大的热挠曲。实践表明,上、下汽缸温差过大,往往是造成大轴弯曲的初始原因。

(3)  机组热态启动时,状态变化比较复杂,运行人员应特别注意进汽温度、轴封供汽等问题的控制与掌握,以往的大轴弯曲事故大多发生在热态启动过程中。

(4)  加强对机组振动的监视。在第一临界转速以下发生动静摩擦时,引起大轴弯曲的威胁最大,因此在中速以下汽轮机轴承振动达到0.03mm时,必须打闸停机,切忌在振动增大时降速暖机。在遇到异常情况打闸停机时,要注意检查转子的惰走时间,如发现比正常情况有明显的变化,则应注意查明原因。

(5)  在汽轮机停机后,注意切断与公用系统相连的各种水源,严防汽缸进水。为了加强停机后对设备的监视,应继续坚持正常的巡回检查制度,发现异常情况,立即进行分析处理。

15 、叙述汽轮发电机组振动故障诊断的一般步骤

汽轮发电机组振动故障诊断步骤如下:

(1)  测定振动频率,确定振动性质。若振动频率与转子转速不符合,说明发生了自激振动,进而可寻找具体的自激振动根源。若振动频率与转速相符,说明发生了强迫振动。

(2)  查明发生过大振动的轴承座,其稳定性是否良好,如不够良好应加固。如果轴承座稳定性不是主要原因,则可认定振动过大是由于激振力过大所致。

(3)  确定激振力的性质。

(4)  寻找激振力的根源,即振动缺陷所发生的具体部件和内容。在进行振动故障诊断时,常振动最大表现处即为缺陷所在处。但有时,特别是多根转子(尤其柔性转子)连在一起的轴系,某个转子轴承上缺陷造成的振动,能在其他转子轴承处造成更大的振动。这既有轴承刚度的问题,又涉及多根轴连在一起的振型问题,具体分析时必须考虑这一因素。

16 、运行中汽轮机振动会造成什么危害?

运行中汽轮机振动会造成下列危害:

(1)  低压端部分轴封磨损,密封作用破坏,空气漏入低压缸内,影响真空;高压端部分轴封磨损,从高压缸向外漏汽量增大,使转子局部受热而发生弯曲,蒸汽进入轴承油中使油质乳化。

(2)  隔板汽封磨损严重,将使级间漏汽量增大,除影响经济性外,还会使轴向推力增大,致使推力瓦钨金熔化。

(3)  滑销磨损严重时,影响机组的正常热膨胀,从而引起其它事故。

(4)  轴瓦钨金破裂,坚固螺钉松脱、断裂。

(5)  转动部分的耐疲劳强度降低,将引起叶片、轮盘等损坏。

(6)  发电机、励磁机部件松动、损坏。

(7)  调速系统不稳定。

17 、汽轮机轴向位移增大的主要原因有哪些?

汽轮机轴向位移增大的主要原因有:

(1)  汽温汽压下降,通流部分过负荷及回热加热器停用。

(2)  隔板轴封间隙因摩损而漏汽增大。

(3)  蒸汽品质不良,引起通流部分结垢。

(4)  发生水冲击。

(5)  汽轮机过负荷,一般来讲凝汽式汽轮机的轴向推力随负荷的增加而增大;对抽汽式或背压式汽轮机来讲,最大的轴向推力可能在某一中间负荷时。

(6)  推力瓦损坏。

18 、防止低温脆性破裂事故,应在运行维护方面做哪些措施?

防止低温脆性破裂事故应做下列措施: 

(1)  避免或减少热冲击损伤。冲转时控制主蒸汽温度至少应有50℃过热度。机组启动时应按照规程而执行暖机方式和暖机时间,使转子内孔温度与内应力相适应,避免材料承受超临界应力,因此对转子应进行充分预热,控制金属升温率和气缸内外温差。

(2)  正常运行时应严格控制一、二次汽温,不可超限或大幅度变化。

(3)  应当在25%低负荷暖机3~4h后,才可做超速试验。

(4)  中速暖机待高、中压内缸下壁温度达到250℃以上方可升至全速,确保转子中心孔温度高于低温脆变温度。

(5)  正常运行时采取滑压运行方式调节变负荷,可以减少热应力变化的幅度。尤其采用滑参数停机,是有利于减少热应力

19 、主机油箱油位变化一般由哪些原因造成?

主机油箱油位升高的原因:

(1)  均压箱压力过高或端部轴封汽量过大。

(2)  轴加抽气器工作失常,使轴封出汽不畅而油中带水。

(3)  冷油器铜管漏,并且水压大于油压。

(4)  油位计卡死,出现假油位。

(5)  启动时高压油泵和润滑油泵的轴承冷却水漏入油中。

(6)  当冷油器出口油温升高、粘度小,油位也会有所提高。

(7)  密封油箱油位过低造成主油箱油位高。主机油箱油位降低的原因如下所述:

(1)  油箱事故放油门及油系统其它部套泄漏或误开。

(2)  净油器过滤油泵到油位高限不能自启动将油打入主油箱。

(3)  冷油器铜管漏。

(4)  冷油器出口油温低,油位也有所降低。

(5)  轴承油挡漏油。

(6)  油箱刚放过水。

(7)  油位计卡涩。

(8)  密封油箱油位过高造成主油箱油位低。

(9)  停机时发电机进油。

20 、汽轮机启动排汽缸温度升高的原因及危害?

(1)  在汽轮机启动时,蒸汽经节流后通过喷嘴去推动调速级叶轮,节流后蒸汽熵值增加,焓降减小,以致作功后排汽温度较高。在并网发电前的整个启动过程中,所耗汽量很少,这时做功主要依靠调节级,乏汽在流向排汽缸的通路中,流量小、流速低、通流截面大,产生了显著的鼓风作用。因鼓风损失较大而使排汽温度升高。在转子转动时,叶片(尤其末几级叶片比较长)与蒸汽产生摩擦,也是使排汽温度升高的因素之一。汽

轮机启动时真空较低,相应的饱和温度也将升高,即意味着排汽温度升高。汽轮机启动时间过长,也可能使排汽缸温度过高。

(2)  当并网发电升负荷后,主蒸汽流量随着负荷的增加而增加,汽轮机逐步进入正常工况,摩擦和鼓风损耗所占的功率份额越来越小。在汽轮机排汽缸真空逐步升高的同时,排汽温度即逐步降低。

(3)  排汽缸温度升高,会使低压缸轴封热变形增大,易使汽轮机洼窝中心发生偏移,导致振动增大,动、静之间摩擦增大,严重时低压缸轴封损坏。

(4)  当排汽缸的温度达到80℃以上,排汽缸喷水会自动打开进行降温,不允许排汽缸的温度超过120℃。

21、汽轮机发生轴承断油的原因有哪些?

汽轮机发生轴承断油的原因有:

(1)  在汽轮机运行中进行油系统切换时发生误操作。

(2)  主油泵失压而润滑油泵又未联动时,将引起断油,或在润滑油泵联动前的瞬间,也会引起断油。

(3)  油系统存在大量空气未能及时排除,会造成轴瓦瞬间断油烧坏轴瓦。油过虑器、冷油器切换时未按规定预先排除空气,会使大量的空气进入供油管道,造成轴瓦瞬间断油。

(4)  启动、停机过程中润滑油泵不上油。

(5)  主油箱油位过低,注油器进入空气,使主油泵断油。

(6)  因厂用电中断直流油泵不能及时投入时造成轴瓦断油。

(7)  供油管道断裂,大量漏油造成供油中断。

(8)  安装或检修时油系统存留有棉纱等杂物,造成进油堵塞。

(9)  轴瓦在运行中位移,如轴瓦旋转,造成进油口堵塞。

22 、个别轴承温度升高和轴承温度普遍升高的原因有什么不同?

个别轴承温度升高的原因:

(1)  负荷增加、轴承受力分配不均、个别轴承负荷重。

(2)  进油不畅或回油不畅。

(3)  轴承内进入杂物、乌金脱壳。

(4)  靠轴承侧的轴封汽过大或漏汽大。

(5)  轴承中有气体存在、油流不畅。

(6)  振动引起油膜破坏、润滑不良。

轴承温度普遍升高:

(1)  由于某些原因引起冷油器出油温度升高。

(2)  油质恶化。

(3)  轴承箱或主油箱回油负压过高,回油不畅等。

(4)  汽轮机组转速升高。

23 、给水泵运行中发生振动的原因有哪些?

(1)  流量过大,超负荷运行。

(2)  流量小时,管路中流体出现周期性湍流现象,使泵运行不稳定。

(3)  给水泵汽化。

(4)  轴承松动或损坏。

(5)  叶轮松动。

(6)  轴弯曲。

(7)  转动部分不平衡。

(8)  联轴器中心不正。

(9)  泵体基础螺丝松动。

(10) 平衡盘严重摩损。

(11) 异物进入叶轮。

24 、凝汽器铜管腐蚀有哪些现象?

凝汽器铜管腐蚀的现象有以下几种:

(1)  电化学腐蚀。凝汽器运行时,由于从铜管内流过的冷却水不是净化的化学水,其中往往溶解有盐碱类地碱等电解质,所以冷却水具有导电性而引起电化学腐蚀。

(2)  冲击腐蚀。这是凝汽器铜管损坏的一种主要形式。它多发生在铜管的进口端。因为此处的水流速大且不均匀,造成冲击腐蚀。另外,当冷却水中含沙量大时,机械摩擦也会使凝汽器铜管摩损腐蚀。

(3)  脱锌腐蚀。这是电化学作用的结果。铜管内表面有一层氧化膜,用于保护铜管不被电化学腐蚀但运行中泥沙冲刷、杂物摩擦及水流冲击等原因,使铜管内表面保护膜脱落。钢和锌在水中产生电解作用,使铜管中的锌被水溶解带。失去锌的铜管呈现多孔状态,管质变脆,机械强度大大降低。

25 、在缸温较高的情况下,盘车因故停运,应如何处理?

在缸温较高的情况下,若盘车故障可按以下原则处理:

(1)  当盘车故障不能运行时,手动进行盘车。同时保持油系统连续运行。在此期间应加强对轴承温度的监视。

(2)  若因为热冲击及随之产生的变形引起汽轮机内部动静部件相碰等原因,使转子不能盘动时,应采取闷缸处理,并在间隔1小时后可试盘一次。无论如何决不能尝试利用向机组送汽冲转或使用吊车来强行盘车。

(3)  当盘车电动机过电流、汽缸上下温差超过规定或听到有明显的金属摩擦声应停止连续盘车,改为定期盘车。按要求定期盘车180°。并密切监视TSI偏心表中的数据,认真记录偏心度数值、盘车时间和次数。

(4)  若因三台顶轴油泵有两台故障,应启动一台顶轴油泵,只要顶轴油压正常,可以进行盘车,但应启动直流润滑油泵增加润滑油量。若三台顶轴油泵均故障不能运行时,应进行闷缸处理,并联系检修尽快修复。修复后应将转子转动180°校直后再投入连续盘车。

(5)  在盘车中断后再投入连续盘车时,应监视转子偏心,用倾听机组动静部分有无摩擦声。

(6)  闷缸方法:关闭汽缸、抽汽管道的所有疏水门,隔绝所有进入汽轮机、凝汽器的汽源,待上下缸温差小于50℃时,再用盘转180°自重法校直转子,当转子晃动值正常后,再投入连续盘车。

33. 汽轮机运行中,推力瓦温度高有哪些原因?如何调整?

运行中,推力瓦温度高有:

(1)  冷油器出口油温高。

(2)  润滑油压低。

(3)  推力轴承油量不足。

(4)  推力轴承摩损。

(5)  轴向推力大。

(6)  发生水冲击。

(7)  负荷骤变,真空变化,蒸汽压力及温度变化。

调整处理:

(1)  当发现推力轴承金属温度任一点升高5℃或持续升高,应查明升高原因,并向主值、值长汇报。应查冷油器出口温度,并调整正常。检查润滑油压、推力轴承轴承油流是否正常。

(2)  推力轴承金属温度异常,应倾听机组内部有无异音,并检查负荷、汽温、汽压、真空、轴向位移、振动变化情况,若有异常,应将其调整至正常。

(3)  当推力轴承金属温度或推力轴承回油温度达到报警值时,应汇报值长,减负荷,并密切监视。

(4)  当推力轴承金属温度或轴承回油温度达停机值时,应破坏真空紧急停机。

26 、  试述凝汽器真空下降的处理原则。

(1)  发现真空下降,应对照排汽温度,确认真空下降,应迅速查明原因,立即采取相应的对策进行处理,并汇报上级领导。

(2)  真空下降应启动备用真空泵,如真空跌至减负荷值仍继续下降,则应按真空下降幅度减负荷直至减负荷到零。

(3)  经处理无效,机组负荷虽减到零真空仍无法恢复,应打闸停机。

(4)  真空下降时,应注意汽泵的运行情况,必要时切至电泵运行。

(5)  真空下降,应注意排汽温度的变化。

(6)  如真空下降较快,在处理过程中已降至停机值,保护动作机组跳闸,否则应手动打闸停机。

(7)  因真空低停机时,应及时切除并关闭高、低压旁路,关闭主、再热蒸汽管道至凝汽器疏水,禁止开启锅炉至凝汽器的二级旁路。

(8)  加强对机组各轴承温度和振动情况的监视。

27 、机组运行中,发生循环水中断,应如何处理?

(1)  即手动紧急停运汽轮发电机组,维持凝结水系统及真空泵运行。

(2)  及时切除并关闭旁路系统,关闭主、再热蒸汽管道至凝汽器的疏水,禁止开启锅炉至凝汽器的5%启动旁路。

(3)  注意闭式水各用户的温度变化。

(4)  加强对润滑油温、轴承金属温度、轴承回油温度的监视。若轴承金属温度或回油温度上升至接近限额,应破坏真空紧急停机。

(5)  关闭凝汽器循环水进、出水阀,待排汽温度降至规定值以下,再恢复凝汽器通循环水。

(6)  检查低压缸安全膜应未吹损,否则应通知检修及时更换。

28 、  汽轮机油系统润滑油漏油如何处理?

当值班人员一旦发现润滑油箱油位下降,值班人员应首先校对油位计,确认油位下降,

应查找原因。

(1)  检查事故放油门是否严密。对冷油器进行放水检查,若冷油器泄漏应隔离泄漏冷油器。

(2)  检查油系统管道有无漏油,严防油漏至高温管道及设备上。

(3)  当油箱油位下降至低一值报警时,应加油。

(4)  油系统大量漏油,应立即设法堵漏,以减少漏油或改变漏油方向,严防油漏至高温管道及设备上,同时迅速对油箱加油并消除缺陷。

(5)  若因大量漏油使油箱油位快速下降停机值或润滑油压力下降至0.06Mpa保护未动,立即破坏真空紧急停机。

(6)  当如漏油至高温管道或部件引起火灾,应用干粉灭火器或泡沫灭火器,禁止用水灭火。应立即发出“119”火警警报通知消防队,并汇报值长及有关领导。

29 、汽轮机各监视段压力有何重要性?

(1)  汽轮机各监视段压力即各段抽汽压力,因为除末级和次末级外,各段抽汽压力均与主蒸汽流量成正比。根据这个关系,在运行中通过各监视调节级压力和各段抽汽压力,可有效地监督通流部分工作是否正常。每台机组都有额定负荷下对应的各段抽汽压力,且在机组安装或大修后,应在正常工况下通过试验得出负荷、主蒸汽流量及各段监视压力的对应关系,以作为平时运行监督的标准。

(2)  在正常运行中及某一负荷下,如果监视段压力升高,则说明该段以后通流部分有可能结垢,或其它金属部件脱落堵塞;当然,如果调节级和高压缸压力同时升高,则可能是中压调速汽门开度受阻或中压缸某级抽汽停运。

(3)  监视段压力不但要看其绝对值增高是否超过规定值,还要监视各段之间的压差是否超过规定值。若某过级段的压差过大,则可能导致叶片等设备损坏事故。

30 、叙述汽轮机调节级压力异常的原因及处理方法。

在正常运行中,调节级压力与主汽流量基本成正比,引起调节级压力异常的原因有:

(1)  有于仪表测量原因,造成指示失准。

(2)  汽轮机通流部分积盐垢,造成通流面积减小。

(3)  由于金属零件碎裂或机械杂物堵塞通流部分或叶片损伤变形。

(4)  在主机负荷不变的情况下,由于各种原因造成主汽流量偏离设计值,如多台加热器撤出,锅炉再热器大量泄漏,主机低压旁路严重内漏,或是真空突变,主汽压力、汽温等大幅度变化,都将引起主汽流量异常,从而反映在调节级压力的异常变化上。

(5)  主机超负荷运行。

调节级压力异常的处理:

(1)  机组大修后在一定工况下,对应的调节级压力应有原始记录,以便供日常运行中作出对照比较。当主机调节级压力异常时,首先要具体分析找出原因,并加强相关参数的监视,如主汽压力、温度、真空等以及主机振动、胀差、轴位移,以及各段抽汽压力是否出现异常。

(2) 对于由于热工测点故障而使调节级压力异常时,由于此时主汽流量也可能出现失常,要加强对协调控制系统、汽包水位自动等的监视,必要时手动调整,并对主汽流量通过间接手段加强监视。尽快联系仪控人员处理。

(3)  由于通流部分积盐造成的通流部分面积减小,是缓慢进行的,机组运行一段间隔后,应将调节级压力与原始值作出比较,一旦发现积盐现象,尽快作出停机处理,同时在日常运行中, 要加强对汽水品质管理,防止由于蒸汽品质超标而造成叶片结垢。

(4)  在调节级压力异常变化时,同时主机振动加剧,轴位移明显变化或出现凝结水硬度、导电率等指标上升,或出现加热器满水,判断为主机叶片损坏,严格按规程减负荷或停机,防止事故扩大。

(5)  在机组高负荷时,主汽参数尽可能在额定值运行,对应负荷下,主汽流量明显增大时, 除主汽各参数外,还应检查是否主汽门后的蒸汽系统有泄漏,从而导致流量加大。加热器撤出时要加强对调节级压力的监视(特别是多台加热器同时撤出)。

(6)  当调节级压力升高至规定值时,机组应申请降负荷处理。

31 、为什么汽轮机采用变压运行方式能够取得经济效益?

汽轮机变压运行(滑压运行)能够取得经济效益的原因主要有以下几点:

(1)  通常低负荷下定压运行,大型锅炉难以维持主蒸汽及再热蒸汽温度不降低,而变压运行时,锅炉较易保持额定的主蒸汽和再热蒸汽温度。当变压运行主蒸汽压力下降,温度保持一定时,虽然蒸汽的过热焓随压力的降低而降低,但由于饱和蒸汽焓上升较多,总焓明显升高,这一点是变压运行取得经济效益的重要原因。

(2)  变压运行汽压降低,汽温不变时,汽轮机各级容积流量、流速近似不变,能在低负荷时保持汽轮机内效率不下降。

(3)  变压运行,高压缸各级,包括高压缸排汽温度将有所升高,这就保证了再热蒸汽温度,有助于改善热循环效率。

(4)  变压运行时,允许给水压力相应降低,在采用电动变速给水泵时可显著地减少给水泵的用电。此外,给水泵降速运行,对减轻水流对设备的侵蚀,延长给水泵使用寿命有利。

32 、 提高机组运行经济性要注意哪些方面?

提高机组运行经济性要注意以下方面:

(1)  维持额定蒸汽初参数。

(2)  维持额定再热蒸汽参数。

(3)  保持最有利真空。

(4)  保持最小的凝结水过冷度。

(5)  充分利用加热设备,提高给水温度。

(6)  注意降低厂用电率。

(7)  降低新蒸汽的压力损失。

(8)  保持汽轮机最佳效率。

(9)  确定合理的运行方式。

(10) 注意汽轮机负荷的经济分配。

33 、汽轮机有哪些主要的级内损失?损失的原因是什么?

汽轮机级内主要有喷嘴损失、动叶损失、余速损失、叶高损失、扇形损失、部分进汽损失、摩擦鼓风损失、漏汽损失、湿汽损失。

(1)  喷嘴损失和动叶损失是由于蒸汽流过喷嘴和动叶时汽流之间的相互摩擦及汽流与叶片表面之间的摩擦所形成的。

(2)  余速损失是指蒸汽在离开动叶时仍具有一定的速度,这部分速度能量在本级未被利用, 所以是本级的损失。但是当汽流流入下一级的时候,汽流动能可以部分地被下一级所利用。

(3)  叶高损失是指汽流在喷嘴和动叶栅的根部和顶部形成涡流所造成的损失。

(4)  扇形损失是指由于叶片沿轮缘成环形布置,使流道截面成扇形,因而,沿叶高方向各处的节距、圆周速度、进汽角是变化的,这样会引起汽流撞击叶片产生能量损失,汽流还将产生半径方向的流动,消耗汽流能量。

(5)  部分进汽损失是由于动叶经过不安装喷嘴的弧段时发生“鼓风”损失,以及动叶由非工作弧段进入喷嘴的工作弧段时发生斥汽损失。

(6)  摩擦鼓风损失是指高速转动的叶轮与其周围的蒸汽相互摩擦并带动这些蒸汽旋转,要消耗一部分叶轮的有用功。隔板与喷嘴间的汽流在离心力作用下形成涡流也要消耗叶轮的有用功。

(7)  漏汽损失是指在汽轮机内由于存在压差,一部分蒸汽会不经过喷嘴和动叶的流道,而经过各种动静间隙漏走,不参与主流做功,从而形成损失。

(8)  湿汽损失是指在汽轮机的低压区蒸汽处于湿蒸汽状态,湿汽中的水不仅不能膨胀加速做功,还要消耗汽流动能,还要对叶片的运动产生制动作用消耗有用功,并且冲蚀叶片。

34 、  在主蒸汽温度不变时,主蒸汽压力的变化对汽轮机运行有何影响?

主蒸汽温度不变,主蒸汽压力升高对汽轮机的影响:

(1)  整机的焓降增大,运行的经济性提高。但当主汽压力超过限额时,会威胁机组的安全。

(2)  调节级叶片易过负荷。

(3)  机组末几级的蒸汽湿度增大;

(4)  引起主蒸汽管道、主汽门及调速汽门、汽缸、法兰等变压部件的内应力增加,寿命减少,以致损坏。

主蒸汽温度不变,主蒸汽压力下降对汽轮机影响:

(1)  汽轮机可用焓降减少,耗汽量增加,经济性降低,出力不足。

(2)  汽机通流部分易过负荷。

(3)  对于用抽汽供给的给水泵的小汽轮机和除氧器,因主汽压力过低也就引起抽汽压力

相应降低,使小汽轮机和除氧器无法正常运行。

35 、汽轮机的变压运行有哪几种方式?

汽轮机的变压运行有以下几种方式:

(1)  纯变压运行。即在在整个负荷变化的范围内,调速汽门全开,负荷变化全由锅炉压

力来控制的运行方式。

(2)  节流变压运行。为了弥补完全变压运行时负荷调整速度缓慢的缺点,在正常情况下调速汽门不全开,对主蒸汽压力保持一定的节流。当负荷突然增加时,原未开大的调速汽门迅速全开,以满足突然增加负荷的需要。此后,随锅炉蒸汽压力的升高,调门又重新关小,直到原滑压运行的调门开度。

(3)  复合变压运行。这是一种变压运行和定压运行相结合的运行方式,具体有以下三种方式。

① 低负荷时变压运行,高负荷时定压运行。在低负荷时,最后一个或两个调门关闭,而其它调门全开,随着负荷逐渐增大,汽压到额定压力后,维持主汽压力不变,改用开大最后一个或两个调门,继续增加负荷。这种方式在低负荷时,机组显示出变压运行的特性,而在高负荷时,机组又有一定的容量参于调频,这是一种比较理想的运行方式。

② 高负荷时变压运行,低负荷时定压运行。大容量机组采用变速给水泵,尽管其转速变化范围很宽,但也有最低转速的限制,另外,锅炉在低压力高温度时,吸热比例发生较大的变化,给维持主汽温度带来一定的困难,因而锅炉最低运行压力受到限制。这种方式满足了以上要求,并且在高负荷下具有变压运行的特性。

③ 高负荷和低负荷时定压运行,中间负荷区变压运行:在高负荷区用调门调节负荷,保持定压运行;在中间负荷区时,一个或两个调门关闭,处于滑压运行状态;在低负荷区时,又维持一个较低压力水平的定压运行。这筇中运行方式也称为定—滑—定运行方式,它综合了以上两种方式的优点。

36 、  叙述影响正、负胀差变化的有关因素。

使胀差向正值增大的主要因素简述如下:

(1)  启动时暖机时间太短,升速太快或升负荷太快。

(2)  汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。

(3)  滑销系统或轴承台板的滑动性能差,滑销系统发生了卡涩。

(4)  轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。

(5)  机组启动时,进汽压力、温度、流量等参数过高。启动中主、再热蒸汽温升过快。

(6)  推力轴承磨损,轴向位移增大。

(7)  汽缸保温层的保温效果不佳或保温层脱落。在严寒季节里,汽机房室温太低或有穿堂冷风。

(8)  双层缸的夹层中流入冷汽(或冷水)。

(9)  胀差指示器零点不准或触点磨损,引起数字偏差。

(10) 多转子机组,相邻转子胀差变化带来的互相影响。

(11) 真空变化的影响。

(12) 各级抽汽量变化的影响,若一级抽汽停用,则影响高压胀差很明显。

(13) 轴承油温太高。

(14) 机组停机惰走过程中由于“泊桑效应”的影响。

使胀差向负值增大的主要因素简述如下:

(1)  负荷迅速下降或突然甩负荷。

(2)  主汽温骤减或启动时的进汽温度低于金属温度。

(3)  水冲击。

(4)  汽缸夹层、法兰加热装置加热过度。

(5)  轴封汽温度太低。

(6)  轴向位移变化。

(7)  轴承油温太低。

(8)  启动时转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。

(9)  汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽。

启动时,一般应用汽加热装置来控制汽缸的膨胀量,而转子则主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。

汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展。特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。汽轮机转子停止转动后,负胀差可能会更加发展,为此在停机过程中,应当维持一定温度

的轴封蒸汽,以免造成恶果。

37 、分析汽轮机启动过程中产生最大热应力的部位和时间。

汽轮机汽缸和转子最大热应力所发生的时间应在非稳定工况下金属内外壁温差最大时刻。在一定的蒸汽温升率下,汽轮机启动进入准稳态,转子表面与中心孔、汽缸内外壁的温差接近该温升率下的最大值,故汽轮机启动进入准稳态时热应力也达到最大值。在启停和工况变化时,汽轮机中最大应力发生的部位通常是高压缸的调节级处、再热机组中压缸的进汽区、高压转子在调节级前后的汽封处,中压转子的前汽封处等。这些部

位工作温度高,启停和工况变化时温度变化大,引起的温差大,热应力亦大。此外,在部件结构有突变的地方,如叶轮根部、轴肩处的过渡圆角及轴封槽处都有热应力集中现象,上述部位的热应力是光滑表面的2~4倍。

38 、如何进行凝汽器半边查漏?

(1)  与值长联系将机组负荷减至额定负荷70%左右(凝结水硬度过大时,负荷还需适当降低,并投入二组抽汽系统)。

(2)  适当提高轴封供汽压力。

(3)  将不查漏的一侧凝汽器循环水进水门适当开大。

(4)  关闭查漏一侧的凝汽器至抽气器空气门。

(5)  关闭查漏一侧的凝汽器循环水进水门及连通门,调整循环水空气门,循门关闭后必须将切换手柄放至手动位置。

(6)  检查机组运行正常后,开启停用一侧凝汽器放水门。

(7)  凝汽器真空不得低于85kPa,排汽温度不应超过70℃。

(8)  开启停用一侧凝汽器人孔门,进入查漏。

(9)  查漏完毕后,由班长检查确无人,无工具遗留时,关闭凝汽器人孔门及放水门。

(10) 开启停用一侧凝汽器循环水进水门,调整循环水空气门、循环水连通门,将另侧循环水进水门调正。

(11) 将停用一侧凝汽器至抽汽器空气门开启。

(12) 用同样方法对另侧凝汽器查漏。

(13) 在查漏过程中,凝汽器真空值应不小于87KPa,且趋势稳定,否则应停止凝汽器半边清洗工作,尽快恢复清洗侧凝汽器运行。

39、 凝汽器灌水查漏时应注意什么事项?

(1)  凝汽器查漏应有专人监视,确认凝汽器循环水进、出口门关闭并停电加锁。

(2)  凝汽器灌水前应检查确定凝汽器下部千斤顶已放置并支撑牢固,凝汽器循环水水侧水已放尽。

(3)  对于凝汽器冷却水管查漏时高、中压汽缸金属温度均应在300℃以下。凝汽器冷却水管查漏应加水至管道全部淹没,汽侧及水侧人孔门打开。

(4)  查漏如需加压时,压力不超过50Kpa,检修人员应将汽轮机端部轴封封住,低压缸大气安全门应固定好。对于凝汽器汽侧漏空气查漏应注意高中压汽缸金属温度低于200℃方可进行。

(5)  进水后,应加强对汽缸上下缸温差监视,汽侧人孔门逸水后开启汽侧监视孔门及顶部放空气门,关闭汽侧人孔门。灌水后运行配合检修人员,进行查漏。查漏结束后放去存水,确认无人及无工具遗留时关闭水侧人孔门及放水门。

(6)  全面检查后将设备放至备用状态。

40 、  什么是调速系统的速度变动率?从有利于汽轮机运行的角度对其有何要求?

当汽轮机孤立运行时,空负荷对应的稳定转速n2与满负荷对应的稳定转速n1之间的差值,与额定转速n0比值的百分数,叫调速系统的速度变动率,用符号δ表示。速度变动率表明了汽轮机从空负荷到满负荷转速的变化程度。速度变动率不宜过大和过小,一般的取值范围是3%~6%,调峰机组取偏小值,带基本负荷机组取偏大值。速度变动率过小时,电网频率的较小变化,即可引起机组负荷较大的变化,正常运行时会产生较大的负荷摆动,影响机组安全运行而且调速系统的动态稳定性差。速度变动率过大,调速系统工作时动态稳定性好,但当机组甩负荷时,动态超

速增加,容易产生超速。

另一方面,为了保证汽轮机在启动时易于并网和在满负荷时防止过负荷,要求在静态特

性曲线这两段有较大的速度变动率。同时又要求保证总的速度变动率不至过大,所以中间段数值较小。为了保证机组在全范围内平稳运行,速度变动率的变化要使调速系统的静态特性曲线平滑而连续地向功率增加的方向倾斜变化,不容许其曲线有上升段和水平段。

41 、叙述除氧器的工作原理?除氧器出口含氧量升高有哪些原因?

除氧器由除氧塔及下部的储水箱组成。在除氧塔中装有筛状多孔的沐水盘,从凝结水泵来的凝结水和高加疏水,分别由上部管道进入除氧塔,经筛状多孔沐水盘分散成细小的水滴落下。汽机来的抽汽进入除氧器下部,并由下向上流动,与下落的细小水滴接触换热,把水加热到饱和温度,水中的气体不断分离逸出,并经塔顶的排气管排走,凝结水则流入下部的储水箱,除氧器排出的汽气混合物经过余汽冷却器,回收汽中工质和一部分热量后排入大气或直接排入大气。造成除氧器出口含氧量升高的主要原因由机组负荷突增,除氧器内压力升高及进入除氧器的水温下降或进入除氧器水量过大,凝水中含氧量大,除氧器进汽量小,除氧器排气阀开度小等原因。

42 、汽轮机启动时为何排汽缸温度升高?

(1)  汽轮机在启动过程中,调门开启、全周进汽,经过冲转、升速、历时约1.5h中速暖机(转速1200r/min)升速至2800r/min、阀切换等阶段后,逐步进行全速并网、升负荷。在汽轮机启动时,蒸汽经节流后通过喷嘴去推动调速级叶轮,节流后蒸汽熵值增加,焓降减小,以致作功后排汽温度较高。

(2)  在并网发电前的整个启动过程中,所耗汽量很少,这时做功主要依靠调节级,乏汽在流向排汽缸的通路中,流量小、流速低、通流截面大,产生了显著的鼓风作用。因鼓风损失较大而使排汽温度升高。在转子转动时,叶片(尤其末几级叶片比较长)与蒸汽产生摩擦,也是使排汽温度升高的因素之一,汽轮机启动时真空较低,相应的饱和温度也将升高,即意味着排汽温度升高。排汽缸温度升高,会使低压缸轴封热变形增大,易使汽轮机洼窝中心发生偏移,导致振动增大,动、静之间摩擦增大,严重时低压缸轴封损坏。

(3)  当并网发电升负荷后,主蒸汽流量随着负荷的增加而增加,汽轮机逐步进入正常工况,摩擦和鼓风损耗所占的功率份额越来越小。在汽轮机排汽缸真空逐步升高的同时,排汽温度即逐步降低。汽轮机启动时间过长,也可能使排汽缸温度过高。我们应当按照规程要求,根据程序卡来完成启动过程,那么排汽缸的温度升高将在限额内。当排汽缸的温度达到80℃以上,排汽缸喷水会自动打开进行降温,不允许排汽缸的温度超过120℃。

43 、叙述自密封轴封系统的组成和工作原理。

自密封轴封系统由轴端汽封、轴封供汽母管、轴封供汽压力调整机构、轴封冷却器、轴抽风机、减温器及有关管道组成。一般其高压缸排汽端轴封分为4段3腔室,压力从高到低,3腔室分别连至除氧器、轴封供汽母管和轴封抽汽管道至轴封冷却器;中压缸排汽端和低压缸两端轴封分为3段2腔室,2腔室分别连至轴封供汽母管和轴封抽汽管道至轴封冷却器。在机组正常运行时,靠高、中压缸两端轴封漏汽进轴封供汽母管作为低压缸两端的轴封供汽,即实现自密封。在机组启动、空负荷和低负荷时,可选择由辅助蒸汽、主蒸汽或冷再热蒸汽分别通过三个压力调节阀向轴封供汽母管供汽以防止空气漏入汽缸。在轴封系统进入自密封后,通过溢流阀排走过量的蒸汽,调整轴封供汽母管压力。为防止高温蒸汽进入低压缸两端汽封而造成汽封体和轴承座受热变形,由凝结水通过减温器向轴封供汽母管喷水,从而维持汽封蒸汽温度在121~177℃之内。

44 、何谓滑参数停机?它有什么优缺点?

滑参数停机是指在调速汽门全开状态下,借助锅炉降低蒸汽参数以逐渐降低负荷,汽轮机金属温度也随着相应降低,直至负荷到零为止。发电机解列后,还可继续降低蒸汽参数以降低汽轮机的转速,直到转子静止。滑参数停机的优点:由于滑参数停机是采用低参数、大流量的蒸汽使汽轮机各受热部件得到均匀的冷却,而且金属温度可以降低到较低水平,故大大缩短了汽缸的冷却时间。另外,还可以利用锅炉的余热发电,利用低参数、大流量的蒸汽对汽轮机的通流部分进行清洗。在条件许可的情况下,高、低压加热器及除氧器均可以进行随机滑停,提高热效率,减少汽水损失。滑参数停机的缺点:在停机过程中比额定参数停机较容易出现大的负胀差,对锅炉运行操作要求很严格,汽温均匀下降很难控制。在汽轮机方面操作和调整频繁,如监视不严格,容易产生水冲击和受热部件过冷却,造成设备损坏。

45 、机组在滑参数停机减负荷过程中汽轮机应注意哪些事项?

(1)  加强对主蒸汽参数的监视,尤其是过热度应大于50℃以上。

(2)  注意高压及中压主汽阀前两侧温差应小于规定值。

(3)  在滑参数停机过程中,再热蒸汽温度下降速度应尽量跟上主蒸汽温度下降速度,主、再热蒸汽温差应在规程要求范围内。

(4)  严密监视机组声音、振动、轴向位移、胀差、支持轴承和推力轴承金属温度的变化情况应正常。

(5)  密切注意汽轮机及主、再热蒸汽管道应无水击现象,检查各疏水阀动作情况应正常,并及时打开各手动疏水阀。

(6)  经常检查汽缸金属温度、上下缸温差及高中压转子应力情况在正常范围。

(7)  滑参数停机过程中,不许进行影响高、中压主汽阀和调节汽阀开度的试验,禁止做

汽轮机超速试验。

(8)  通知化学,加强对凝结水水质的监督,当水质不合格时禁止送入除氧器。

46 、如何保持油系统清洁、油中无水、油质正常?

应做好以下工作:

(1)  机组大修后,油箱、油管路必须清洁干净,机组启动前需进行油循环冲洗油系统,油质合格后方可进入调节系统。

(2)  每次大修应更换轴封梳齿片,梳齿间隙应符合要求。

(3)  油箱排烟风机必须运行正常。

(4)  根据负荷变化及时调整轴封供汽量,避免轴封汽压过高漏至油系统中。

(5)  保证冷油器运行正常,冷却水压必须低于油压。停机后,特别要禁止水压大于油压。

(6)  加强对汽轮机油的化学监督工作,定期检查汽轮机油质和定期放水。

(7)  保证油净化装置投用正常。

47 、机组启动前向轴封送汽要注意哪些问题?

(1)  轴封供汽前应先对送汽管进行暖管排尽疏水。

(2)  必须在连续盘车下向轴封送汽。热态启动应先送轴封供汽,后抽真空。

(3)  向轴封送汽的时间必须恰当,冲转前过早的向轴封送汽,会使上下缸温差增大或胀差增大。

(4)  要注意轴封送汽的温度与金属温度的匹配。热态启动用适当的备用汽源,有利于胀差的控制,如果系统有条件将轴封供汽的温度调节,使之高于轴封体温度则更好,而冷态启动则选用低温汽源。

(5)  在高、低温轴封汽源切换时必须谨慎,切换太快不仅引起胀差的显著变化,而且可能产生轴封处不均匀的热变形,从而导致摩擦、振动。

48 、采用滑参数停机时,可否进行超速试验?为什么?

采用滑参数方式停机时,严禁做汽轮机超速试验。

因为从滑参数停机到发电机解列,主汽门前的蒸汽参数已降得很低,而且在滑停过程中,为了使蒸汽对汽轮机金属有较好的、均匀的冷却作用,主蒸汽过热度一般控制在接近允许最小的规定值,同时保持调速汽门在全开状态。此外如要进行超速试验,则需采用调速汽门控制机组转速,这完全有可能使主蒸汽压力升高,过热度减小,甚至出现蒸汽温度低于该压力所对应下的饱和温度,此时进行超速试验,将会造成汽轮机水冲击事故。另一方面,由于汽轮机主汽门、调速汽门的阀体和阀芯可能因冷却不同步而动作不够灵活或卡涩,特别是汽轮机本体经过滑参数停机过程冷却后,其胀差、轴向位移均有较大的变化,故不允许做超速试验。

49 、  汽轮机热力试验大致包括哪些内容?试验前应做哪些工作?

汽机热力试验主要包括:

(1)  试验项目和试验目的。

(2)  试验时的热力系统和运行方式。

(3)  测点布置、测量方法和所用的测试设备。

(4)  试验负荷点的选择和保持负荷稳定的措施。

(5)  试验时要求设备具有的条件,达到这些条件需要采取的措施。

(6)  根据试验要求,确定计算方法。

(7)  试验中的组织与分工。

试验前应做如下工作:

(1)  全面了解熟悉主、辅设备和热力系统。

(2)  对机组热力系统全面检查,消除各种泄漏和设备缺陷。

(3)  安装好试验所需的测点和仪表并校验。

(4)  拟订试验大纲。

50 、汽轮机热力试验对回热系统有哪些要求?热力特性试验一般装设哪些测点?

热力试验对回热系统要求:

(1)  加热器的管束清洁,管束本身或管板胀口处应没有泄漏。

(2)  抽汽管道上的截门严密。

(3)  加热器的旁路门严密。

(4)  疏水器能保持正常疏水水位。

热力特性试验一般装设下列测点:

(1)  主汽门前主蒸汽压力、温度。

(2)  主蒸汽、凝结水和给水的流量。

(3)  各调速汽门后压力。

(4)  调节级后的压力和温度。

(5)  各抽汽室压力和温度。

(6)  各加热器进、出水温。

(7)  各加热器的进汽压力和温度。

(8)  各段轴封漏汽压力和温度。

(9)  各加热器的疏水温度。

(10) 排汽压力。

(11) 热段压力和温度。

(12) 冷段压力和温度。

(13) 再热器减温水流量、补充水流量、门杆漏汽流量。

51 、如何做机械超速试验?合格标准是什么?

机械超速保护试验方法:

(1)  联系有关岗位做好试验准备。

(2)  确认机组手动脱扣及电超速保护试验已正常。

(3)  试验前应确认注油试验、主汽门、调门严密性试验正常。

(4)  确认主机交、直流润滑油泵及高备泵已试启正常,联锁投入。

(5)  确认机组已带25%负荷暖机4小时。

(6)  确认发电机已解列,机组维持转速3000r/min,主蒸汽参数符合要求。

(7)  联系热控闭锁ETS的电超速通道。

(8)  在DEH画面上调出“超速试验”控制面板。

(9)  在“超速试验”控制面板中点击“试验允许”按钮,灯亮;(有的机组需在硬手操上将钥匙打至“试验”位,进入“超速试验”控制面板中 “试验允许”灯亮,再进行下步操作)。

(10) 在“超速试验”控制面板中点击“机械超速”按钮,灯亮。

(11) 在DEH“控制设定点”子画面,设定目标转速3330r/min,设升速率100r/min,按“进行”键,灯亮。

(12) 当转速接近3300r/min时,机械超速保护动作,自动主气门,调速汽门,抽气逆止门迅速关闭。

(13) 检查主机交流润滑油泵联启正常。

(14) 记录危急保安器动作转速,并在“超速试验”控制面板中按“清除”按钮,清除最高转速。

(15) 若转速达3330r/min时,机械超速保护不动作,应手动脱扣停机。

(16) 试验正常后在“超速试验”控制面板中点击“机械超速”按钮,灯灭。

(17) 在“超速试验”控制面板中点击“试验允许”按钮,退出试验。

(18) 在转速下降过程中注意检查撞击子的复位情况。

(19) 当机组转速小于2900r/min,且避开共振区时,重新挂闸、冲转,维持机组转速

3000r/min。

(20) 若机组转速降至2850r/min以下,应启动高压启动油泵。

(21) 检查一切正常后并列,按正常启动程序带负荷。

合格的标准是:

机械超速保护试验,在同一工况下应连续进行两次,两次试验的动作转速不应超过

18r/min。

52 、汽轮机在什么情况下方可进行甩负荷试验?合格标准是什么?

汽轮机在下述工作完成后方可进行甩负荷试验:

(1)  甩负荷试验应在确认调速系统空负荷试验、带负荷试验以及超速试验合格后才能进行。

(2)  试验应在锅炉和电气方面设备正常情况下,各类安全门调试动作可靠。

(3)  试验措施全面并得到调度或负责工程师同意批准后方可进行。

(4)  试验在甩1/2、3/4额定负荷合格后,方可进行甩全负荷试验。另外,在试验前应作好人员分工。

汽轮机甩负荷试验合格标准:

机组在甩去额定负荷后,转速上升,如未引起危急保安器动作即为合格。如转速未超过额定转速的8%~9%则为良好。

53 、汽轮机控制系统的内容主要有哪些?

一个完善的汽轮机控制系统包括以下功能系统:

(1)  监视系统。监视系统是保证汽轮机安全运行的必不可少的设备,它能够连续监视汽轮机各参数的变化。汽轮机参数监视通常由DAS系统实现,测量结果同时送往调节系统作为限制条件,送往保护系统作为保护条件,送往顺序控制系统作为控制条件。

(2)  保护系统。保护系统的作用是当电网或汽轮机本身出现故障时保护装置根据实际情况迅速动作,使汽轮机退出工作,或者采取一定措施进行保护,以防止事故扩大或造成设备损坏。大容量汽轮机保护内容有超速保护、低油压保护、轴向位移保护、胀差保护、低真空保护、振动保护等。

(3)  调节系统。汽轮机的闭环调节系统包括转速调节系统、功率调节系统、压力调节系统等。

(4)  热应力在线监视系统。热应力无法直接测量,通常是用建立模型的方法通过测取汽轮机某些特定点的温度值来间接计算热应力的。热应力计算结果除用于监视外,还可以对汽轮机升速率和变负荷率进行较正。

(5)  汽轮机自启停控制系统。汽轮机自启停控制系统能够完成盘车、抽真空、升速并网、带负荷、带满负荷以及甩负荷和停机的全部过程。可实现汽轮机自启停的前提条件是各个必要的控制系统应配备齐全,并且可以正常投运。这些系统为自动调节系统、监视系统、热应力计算系统以及旁路控制系统等。

(6)  液压伺服系统。液压伺服系统包括汽轮机供油系统和液压执行机构两部分。供油系统向液压执行机构提供压力油。液压执行机构由电液转换器、油动机、位置传感器等部件组成,其功能是根据电调系统的指令去控制相应的阀门动作。

54 、采用电液调节系统DEH 有哪些优点?

采用电液调节系统有以下优点:

(1)  采用电气元件增加了调节系统的精度,减少了迟缓率,在甩负荷时能迅速地将功率输出返零,改善了动态超速特性。

(2)  实现转速的全程调节,控制汽轮机平稳升速。

(3)  可按选定的静态特性(可方便地改善静态特性的斜率及调频的最大幅值)参与电网一次调频,以满足机、炉、电网等多方面的要求。

(4)  采用功率系统,具有抗内扰及改善调频动态特性的作用,提高机组对负荷的适应性。

(5)  能方便地与机、炉、主控设备匹配,实现机、电、炉自动控制。

55 、叙述卸荷阀的作用和工作原理。

卸荷阀装在油动机液压块上,它主要作用是当机组发生故障需要紧急停机时,在危急脱扣装置动作使AST油失压后,可使油动机活塞下腔的压力油经过卸荷阀快速释放,在弹簧力的作用下均使阀门关闭。

动作原理:在快速卸荷阀中有一杯状滑阀,滑阀下部与油动机活塞下的高压油路相通,高压油通过输入口的节流孔经危急遮断油路充入滑阀的上部。由于调节针阀的针头完全关死了该处的通路,使得滑阀上部的油压力与危急遮断油压相等。因此,滑阀上部油压作用力加上弹簧力大于滑阀下部高压油的作用力,滑阀被压在底座上,高压油至回油进油口被关闭。当危急遮断装置动作使AST油失压时,滑阀上部的油压几乎为零,而弹簧的刚性又不大,因此,滑阀下部的高压油克服弹簧力顶开滑阀,高压油路与回油接通回至

油箱,油油动机活塞下的压力油迅速下降,从而快速关闭进汽门。调节针阀可用来手动卸荷。

56 、 何谓惰走曲线? 绘制它有什么作用?

发电机解列后,从自动主汽门和调节汽门关闭起,到转子完全静止的这段时间称为转子惰走 时间,表示转子惰走时间与转速下降数值的关系曲线称为转子惰走曲线。新机组投运一段时间,各部工作正常后,即可在停机期间,测绘转子的惰走曲线,以此作为该机组的标准惰走曲线,绘制这条曲线时要控制凝汽器的真空,使其以一定速度下降,以后每次停机均按相同上况记录,绘制惰走曲线,以便于比较分析问题。如果惰走时间

急剧减少时,可能是轴承磨损或汽轮机动静部分发生摩擦;如果惰走时间显著增加,则说明新蒸汽或再热蒸汽管道阀门或抽汽逆止门不严,致使有压力蒸汽漏入汽缸。当顶轴油泵起动过早,凝汽器真空较高时,惰走时间也会增加。

57 、为什么停机时必须等真空到零,方可停止轴封供汽?

如果真空未到零就停止轴封供汽,则冷空气将自轴端进入汽缸,使转子和汽缸局部冷却,严重时会造成轴封摩擦或汽缸变形,所以规定要真空至零,方可停止轴封供汽。

58 、为什么规定打闸停机后要降低真空,使转子静止时真空到零?

汽轮机停机惰走过程中,维持真空的最佳方式应是逐步降低真空,并尽可能做到转子静止,真空至零。

这是因为:

(1) 停机惰走时间与真空维持时间有关,每次停机以一定的速度降低真空,便于惰走曲线进行比较。

(2) 如惰走过程中真空降得太慢,机组降速至临界转速时停留的时间就长,对机组的安全不利。

(3) 如果惰走前阶段真空降得太快,尚有一定转速时真空已经降至零,后几级长叶片的鼓风损失产生的热量多,易使排汽温度升高,也不利于汽缸内部积水的排出,容易产生停机后汽轮机金属的腐蚀。

(4) 如果转子已经停止,还有较高的真空,这时轴封供汽又不能停止,也会造成上下缸温差增大和转子变形不均发生热弯曲。

综上所述,停机时最好控制转速到零,真空到零,实际操作时用真空破坏门控制调节。

59 、汽轮机盘车过程中,为什么要投入油泵联锁开关?

汽轮机盘车装置虽然有联锁保护,当润滑油压低到一定数值后,联动盘车跳闸,以保护机组 各轴瓦,但盘车保护有时也会失灵,万一润滑油泵不上油或发生故障,会造成汽轮机轴瓦十摩擦而损坏。油泵联锁投入后,若交流油泵发生故障可联动直流油泵开启,避免轴瓦损坏事故。

60 、盘车过程中应注意什么问题?

(1) 监视盘车电动机电流是否正常,电流表指示是否晃动。

(2) 定期检查转子弯曲指示值是否有变化。

(3) 定期倾听汽缸内部及高低压汽封处有无摩擦声。

(4) 定期检查润滑油泵的工作情况。

61 、为什么停机后盘车结束,润滑油泵必须继续运行一段时间?

润滑油泵连续运行的主要目的是冷却轴颈和轴瓦,停机后转子金属温度仍然很高,顺轴颈方向轴承传热。如果没有足够的润滑油冷却转子轴颈,轴瓦的温度会升高,严重时会使轴承乌金熔化,轴承损坏;轴承温度过高还会造成轴承中的剩油急剧氧化,甚至冒烟起火。低压油泵运行期间,冷油器也需要继续运行并且使润滑油温不高于40℃。高压汽轮机停机 以后,润滑油泵至少应运行8h以上。当然每台机组应根据情况具体确定。

62 、停机后应做好哪些维护工作?

停机后的维护工作十分重要,停机后除了监视盘车装置的运行外,还需做好如下工作:

(1) 严密切断与汽缸连接的汽水来源,防止汽水倒入汽缸,引起上下缸温差增大,甚至设备损坏。

(2) 严密监视低压缸排汽温度及凝汽器水位,加热器水位,严禁满水。

(3) 注意发电机转子进水密封支架冷却水,防止冷却水中断,烧坏盘根。

(4) 锅炉泄压后,应打开机组的所有疏水门及排大气阀门;冬天做好防冻工作,所有设备及管道不应有积水。

63 、汽轮机停机后转子的最大弯曲在什么地方? 在哪段时间内起动最危险?

汽轮机停运后,如果盘车因故不能投运,由于汽缸上下温差或其它某些原因,转子将逐渐发生弯曲,最大弯曲部位一般在调节级附近,最大弯曲值约在停机后2~l0h之间,因此在这段时间内起动是最危险的。

64 、为什么负荷没有减到零,不能进行发电机解列?

停机过程中若负荷不能减到零,一般是由于调节汽门不严或卡涩,或是抽汽逆止门失灵, 闭不严,从供热系统倒进大量蒸汽等引起。这时如将发电机解列,将要发生超速事故。

故必 须先设法消除故障,采用关闭自动主汽门、电动隔离汽门等方法,将负荷减到零,再进行发电机解列停机。

65 、为什么滑参数停机时,最好先降汽温再降汽压?

由于汽轮机正常运行中,主蒸汽的过热度较大,所以滑参数停机时最好先维持汽压不变而适当降低汽温,降低主蒸汽的过热度,这样有利于汽缸的冷却,可以使停机后的汽缸温度低一些,能够缩短盘车时间。

66 、 如何减少上下汽缸温差?

①改善汽缸的疏水条件,选择合适的疏水管径,防止疏水在底部积存。

②机组启停机中,运行人员应正确及时使用各疏水门。

③完善高中压下汽缸挡风板,加强下汽缸的保温工作,减少冷空气的对流。

④正确使汽加热装置,发现上下缸温差超过规定值时,应用汽加热装置对上下缸加热。

67、能够进入汽轮机的冷水、冷汽通常来自哪个系统?

①锅炉和主蒸汽系统。

②过热器减温水系统。

③加热器泄漏满水后从抽汽系统进入汽轮机。

④凝汽器满水。

⑤汽轮机本身的疏水系统不完善和布置不合理。

⑥机组的公用系统。

68 、汽轮机在什么情况下应作超速试验?

①机组大修后;②危急保安器解体检修后;③正常运行中,危急保安器误动作;④停机备用一个月后再次启动;⑤甩负荷试验前;⑥机组运行2000小时后;无法做危急保安器注油试验或注油试验不合格。

69 、凝汽器循环水出水温度升高的原因有哪些?

①进水温度升高,出水温度相应升高。②汽轮机负荷增加。③凝汽器铜管脏污。④循环水量减少。⑤循环水二次滤网堵塞。⑥排气量增加。⑦真空下降。

70 、汽轮机起动升速时,排汽温度升高的原因有哪些?

答:①凝汽器内真空降低,空气末完全抽出,汽气混合在一起,而空气的导热性能较差,使排汽压力升高,饱和温度也较高。②主汽、再热管道、汽缸本体等大量的疏水至膨胀箱,其中扩容器出来的蒸汽排向凝汽器喉部,疏水及疏汽的温度要比凝汽器内饱和温度高4-5倍。③暖机过程中,蒸汽流量减少,流速较慢叶片产生的磨擦鼓风热量不能及时带走。

71 、 影响对流换热的因素有哪些?

①流体流动的动力.②流体有无相变.③流体的流态.④几何因素影响.⑤流体的物理性质。

72 、防止汽轮机大轴弯曲的技术措施有哪些?

①汽缸应具有良好的保温条件。②主蒸汽管道、旁路、主汽管道及汽缸疏水应符合要求。③汽缸各部分温度计齐全可靠。④启动前必须测量大轴晃动度,超过规定则禁止启动。⑤启动前检查上下缸温差。⑥热态启动中严格控制进汽温度和轴封温度。⑦加强振动监视。⑧汽轮机停止后严防汽缸进水。

73 、一般泵类紧急停运的条件是什么?

答:①继续运行明显危及设备及人身安全时。②泵或电机发生强振动或清楚听到金属碰撞声或磨擦声。③任何轴承、轴封冒烟或没温急剧升高超过规定值。④水在泵内汽化采取措施无效时。⑤泵的外壳破裂。⑥电动机开关冒烟或着火。⑦电动机故障。

74 、凝汽器循环水出水温度升高的原因有哪些?

答:①进水温度升高,出水温度相应升高。②汽轮机负荷增加。③凝汽器铜管脏污。④循环水量减少。⑤循环水二次滤网堵塞。⑥排气量增加。⑦真空下降。

75 、汽轮机起动升速时,排汽温度升高的原因有哪些?

①凝汽器内真空降低,空气末完全抽出,汽气混合在一起,而空气的导热性能较差,使排汽压力升高,饱和温度也较高。②主汽、再热管道、汽缸本体等大量的疏水至膨胀箱,其中扩容器出来的蒸汽排向凝汽器喉部,疏水及疏汽的温度要比凝汽器内饱和温度高4-5倍。③暖机过程中,蒸汽流量减少,流速较慢叶片产生的磨擦鼓风热量不能及时带走。

76 、汽轮机真空下降有哪些危害?

①排汽压力升高,可用焓降减小,不经济,同时使机组出力降低。

②排汽缸及轴承座受热膨胀,可能引起中心变化,产生振动。

③排汽温度过高可能引起凝器汽铜管松弛,破坏严密性。

④使汽轮机轴向推力增大。

⑤真空下降使排气容积流量减小,对末几级叶片工作不利,末级产生脱流及旋流,同时还会在叶片的某一部件产生较大的激振力,有可能损坏叶片,造成事故。

77 、 除氧器发生振动的原因有哪些?

答:①投入除氧器过程中,加热不当造成膨胀不均,或汽水负荷分配不均。②进入除氧器各种管道水量过大,管道振动而引起除氧器振动。③运行中由于内部部件脱落。④运行中突然进入冷水,使水箱温度不均产生冲击而振荡。⑤除氧器漏水。⑥除氧器压力降低过快,发生汽水共腾。

78 、调节系统迟绶率过大对汽轮机运行有何影响.

答:①在汽轮机空负荷时,由于调节系统缓率过大,将会引起汽轮机转速不稳定,从而使并网困难.②汽轮机并网后,由于迟缓率过大,将会引起负荷的摆动.③当机组负荷骤然甩至零时,因迟缓率过大,使调节汽门不能立即关闭,造成转速飞升危急保安器动作,如危急保安器不动作,会造成超速飞车的恶性事故。

79 、 为什么真空降到一定数值要紧急停机?

答:①真空降低使轴向位移过大,造成推力轴承过负荷而磨损。②真空降低使叶片因蒸汽流量增大而造成过负荷。③真空降低使排汽缸温度升高,汽缸中心线变化引起机组振动加大。④为了不使低压缸安全门动作,确保设备安全,故真空降到一定数值时应紧急停机。

80 、在主蒸汽温度不变时, 主蒸汽压力升高,对汽机运行有何影响?

答:①整机焓降增大,运行经济性提高。但当主汽压力超过限额时,会威胁机组的安全。②调节级叶片过负荷。③机组末几级的蒸汽温度增大。④引起主蒸汽管道、主汽门、调门、汽缸、法兰等变压部件的内应力增加,寿命减少,以致损坏。

81 、汽轮机发生水冲击的象征有哪些?

①主、再热蒸汽温度10min内下降50℃或50℃以上。②主汽门法兰,汽缸结合面,调节汽门门杆,轴封处冒白汽或溅出水珠。③蒸汽管道有水击声和强烈振动。④负荷下降,汽轮机声音变沉,机组振动增大。⑤轴向位移增大,推力瓦温度升高,差胀减小或出现负差胀。

82 、汽轮机起动过程中,汽缸膨胀不出来的原因有哪些?

答:①主蒸汽参数、凝汽器真空选择不当。②汽缸法兰螺栓加热装置使用不当或操作错误。③增负荷速度快,暖机不充分。④本体及有关抽汽管道疏水门末开。⑤滑销系统卡涩。

83 、轴向位移增大的原因有哪些?

答:①主蒸汽参数不合格,汽轮机通流部分过负荷。②静叶片严重结垢。③汽轮机进汽带水。④凝汽器真空降低。⑤推力轴承损坏。⑥系统频率下降。⑦发电机串轴。

84 、 采用给水回热循环的意义是什么?

答:采用给水回热加热后,一方面从汽轮机中间部分抽出一部分蒸汽,加热给水提高了锅炉给水温度.这样可使抽汽不在凝器中放热,减少了冷源损失,加一方面,提高了给水温度,减少给水在锅炉中的吸热量,因此,在蒸汽初、终参数相同的情况下,采用给水回热循环比朗肯循环热效率高。

85 、轴向位移保护为什么要在冲转前投入?

答:冲转时,蒸汽流量瞬间较大,蒸汽必先经过高压缸,而中低压缸几乎不进汽,轴向推力较大,完全由推力盘来平衡,若此时的轴向位移超限,也同样会引起动静磨擦,故冲转前应将轴向位移保护投入。

86 、 除氧器排氧门为何要保持微量冒汽?

答:除氧器的工作原理是用蒸汽将水加热至该压力下的饱和温度,使凝结水中的溶解汽体(包括氧气)分离出来,以除氧头排氧门排出,如排氧门不开,则分离出来的氧气又会重新溶解在水中,起不到除氧目的,如排氧门开的过大,虽能达到除氧效果,但有大量蒸汽随同氧气一起跑掉,造成热量及汽水损失。所以,在保证除氧效果的前提下,尽量关小排氧门,保持微量冒汽,以减少汽水损失。

87 、 为什么要做真空严密性试验?

答:对于汽轮机来说,真空的高低对汽轮机运行的经济性有直接的关系,真空高,排汽压力低,有效的焓降较大,使循环水带走的的热量减少,机组热效率提高。凝汽器内漏入空气后,降低了真空,有效焓降减少,循环水带走的热量增多。通过凝汽器的真空严密性试验结果,可以鉴定凝汽器的工作好坏,以便采取对策消除泄漏点。

88 、 发电机风温过高,过低有什么危害?

答:发电机风温过高会使静子线圈温度,铁芯温度,转子温度相应升高,使绝缘发生脆化,机械强度减弱,使发电机寿命大大缩短,严重时会引起发电机绝缘损坏,击穿造成事故;风温过低容易发生结露,水珠凝结在发电机线圈上,降低绝缘能力,威胁发电机的安全运行。

89 、 为什么高低压加热器最好随机启动?

答:高低压加热器随机起动,能使加热器受热均匀,有利于防止钢(铜)管胀口漏水,有利于防止法兰因热应力大造成变形,由于连接加热器的抽汽管道是从下汽缸接出的,加热器随机启动,也就等于增加了汽缸疏水点,能减少了上下汽缸的温差,此外,也简化机组并列后的操作。

90 、 汽轮机冲转条件下,为什么规定要有一定数值的真空?

答:汽轮机冲转前必须有一定的真空,一般为-60kpa真空,若真空过低,转子转动就需要较多的新蒸汽,而过多乏汽突然排至凝汽器,凝汽器排汽压力瞬间升高较多,可能使凝汽器侧形成正压,造成排大气安全薄膜损坏,同时也会给汽缸和转子造成较大的热冲击。冲动转子时,真空也不能过高,真空过高不仅要延长建立真空的时间,也因为通过汽轮机的蒸汽量减少,放热系数也小,使汽轮机加热缓慢,从而延长启机时间。

91 、 为什么在启停机时要规定温升率和温降率在一定范围内?

答:汽轮机在启停机时,汽轮机的汽缸、转子是一个加热和冷却过程。启停时,势必使内外缸存在一定的温差。启动时由于内缸膨胀较快,受到热压应力,外缸膨胀较慢受到热拉应力,停机则应力形式相反,当汽缸金属应力超过材料的屈服应力极限时,汽缸可能产生塑性变形或裂纹,而应力的大小与内外缸温差成正比,内外缸温差的大小与金属的温度变化率成正比,故启停机时用金属温升率和温降率作为控制热应力指标。

92 、 汽轮机启停机时,什么规定蒸汽过热度?

答:如果蒸汽的过热度低,在启动过程中,在前几级温度降低过大,后几级温度有可能低到此级压力下的饱和温度,变为湿蒸汽。蒸汽带水对叶片的危害极大,所以在启动停机过程中蒸汽的过热度要控制在50-100℃较为安全。

93、 、 为什么循环水长时间中断要等到凝汽器外壳温度降至50 ℃以下才能起动循环水泵供

水?

答:若循环水中断,如果由于设备问题循环水泵不能马上恢复起来,排汽温度将升高,凝汽器的拉筋、低压缸、铜管均作横向膨胀,此时若通入循环水,铜管首先受到冷却,而低压缸、凝汽器的拉筋却得不到冷却,这样铜管收缩而拉筋不收缩,会产生很大的拉应力,这个拉应力能够将铜管的胀口拉松,造成凝汽器铜管泄漏。因此,为保证凝汽器设备的安全,要等到凝汽器外壳温度降至50℃以下才能通循环水。

94 、 为什么负荷没有减到零,不能进行发电机解列?

答:停机过程中若负荷不能减到零,一般是由于调节汽门不严或卡涩或是抽汽逆止门失灵、关闭不严,从供汽系统倒进大量蒸汽等引起。这时将发电机解列,将要发生超速事故,故必须先设法消除故障,采用关闭自动主汽门,电动主汽门等办法,将负荷减到零,再进行发电机解列停机。

95 、 汽轮机转子发生磨擦后为什么会发生弯曲?

答:由于汽缸法兰金属温度存在温差,导致汽缸变形,径向动静间隙消失,造成转子旋转时,机组端部轴封和隔板汽封处径向发生磨擦而产生很大的热量。产生的热量使轴的两端温度差很快增大,温差的增加,使转子发生弯曲,这样,周而复始,大轴两侧温差越大,转子越弯曲。

96 、 汽轮机油箱为什么要装排油烟机?

答:油箱装设排油烟机的作用是排除油箱内的气体和水蒸汽.这样一方面使水蒸汽不在油箱中凝结,另一方面使油箱中压力不高于大气压力,使轴承回油顺利流入油箱,排油烟机还有将有害气体排出油箱,保证油质不劣化的作用。

97 、 什么是临界转速?它与哪些因素有关?

答:在机组起停中,当转速升高或降低到一定数值时,机组振动突然增大,当转速继续升高或降低后,振动又减少,这种使振动突然增大的转速称为临界转速。临界转速的大小与转子的粗细,重量,几何形状,主轴跨度,刚度,联轴器形式,轴承刚性,弹性等有关。

98 、 为什么排汽缸要装喷水降温装置?

48

答:在汽轮机起动、空载及低负荷时,蒸汽流量很小,不足以带走蒸汽与叶轮摩擦产生的热量,从而使排汽温度升高,排汽缸温度升高,排汽温度过高会引起排汽缸较大变形,破坏汽轮机动静部分的中心线一致性,严重时会引起机组振动或其它事故,所以,大功率机组都装有排汽缸喷水降温装置。

99 、 轴封供汽带水对机组有何危害,应如何处理?

答:轴封供汽带水在机组运行中有可能使轴端汽封损坏,重者将使机组发生水冲击危害机组安全运行。处理轴封带水事故时,根据不同的原因,采取相应措施,如发现机组声音变沉,机组振动增大,轴向位移增大,胀差减小或出现负差胀,应立即破坏真空停机,打开轴封供汽系统及本体疏水门,疏水疏尽后,待各参数符合起动要求后,方可重新起动。

100 、DEH 控制系统具有哪些功能?

答:⑴转速控制⑵自动同期并网⑶功率控制⑷阀位控制⑸压控方式⑹阀门管理⑺CCS方式⑻一次调频⑼限制保护功能⑽阀门严密性试验⑾阀门活动试验⑿运行参数监视。

101 、汽轮机运行中一台凝结水泵检修结束后恢复备用的操作步骤。

答案:①检查检修工作已结束,工作票收回,安全措施拆除;②联系电气、热工人员,对电动机及电动门进行送电;③稍开密封水门;④稍开抽空气门,注意监视机组真空变化及运行泵运行应稳定;⑤缓慢开启入口门;⑥检查正常后开启出口门,注意泵应不倒转;⑦全面检查正常后,根据需要投入联锁备用。

102 、发电机空冷器进水滤网堵塞该如何处理?

答案:①立即开启进水滤网旁路门,关闭其前后手动门,联系检修尽快清理;②根据发电机风温及发电机各部分温度上升情况,机组降负荷运行;③打开发电机空冷器放气门放尽空气;④若发电机各部分温度持续上升,降负荷无效时应停机处理;⑤检修处理过程中应加强对发电机的监视,处理完毕后尽快投入滤网运行。

103 、简述汽轮机组升速过程中的注意事项?

答案:⑴倾听汽轮机,发电机转动部分正常。⑵检查测量各轴承振动正常,轴承盖振动1500 r/min应小于0.03mm;1500 r/min以上应小于0.05mm,升速时大于0.08mm应停机,过临界转速时不大于0.1mm,超过时应停机。轴振动大于0.254mm故障停机,(待转子静止后投入连续盘车,并检查大轴弯曲,倾听声音,查明原因,如惰走时间有明显缩短,禁止连续盘车,应投入间断盘车)严禁在临界转速附近停留。⑶及时调整轴封正常。⑷注意凝汽器、各加热器、除氧器水位正常并及时调整。⑸检查油箱油位、油压各轴承油流正常,保持润滑油温40~45℃。⑹注意轴向位移,缸胀、差胀正常。⑺注意蒸汽温升速度,汽缸各部温升速度及温差正常。

104 、汽轮机油系统着火的预防措施。

答案:①油系统禁止试用铸铁阀门,禁止使用塑料垫、橡皮垫、石棉纸垫;②主油箱的两个事故放油门距油箱大于5米,且不允许加锁,而应挂有明显的“禁止操作”标志牌;③油滤网应按照规定切换及清理;④禁止在油管道上进行焊接工作;⑤办理动火工作票时,在油系统周围不准有明火,必须明火作业时,要采取有效安全措施;⑥严格执行巡回检查制度,及时消除漏油;⑦油系统检修工作结束后将管道保温及时恢复,并要齐包有铁皮。

105 、汽轮机热态启动注意事项是什么?

答案:A、进入汽轮机的新蒸汽温度高于汽缸壁温度50℃以上,应保证蒸汽有80℃的过热度;B、高压缸调节级处上、下部温差不超过50℃;C、冲转前2h转子应处于连续盘车状态;

D、需维持真空-80Kpa以上;

E、先送轴封,后抽真空,以防止冷气进入汽轮机;

F、自动主汽门、调速汽门停机后冷却较快,热态启动注意主汽门内外壁温差≤50℃,切勿加热过快;

G、冲转前对门杆漏汽管道进行充分暖管,疏尽疏水,并投入门杆漏汽。H、热态启动,应适当加快冲转速度,防止缸温下降。

106 、汽轮机供油系统主要包括哪些设备?

答案:供油系统主要包括主油泵、注油器I、注油器II、主油泵启动排油阀、高压油泵、交直流润滑油泵、顶轴油泵、冷油器、滤油器及过压阀等。

107 、表面式加热器端差是怎样产生的?如何减小端差?

答案:采用表面式加热器,汽轮机抽汽在加热器中凝结放热,热量通过采热面金属壁传给管内的主凝结水或锅炉给水,在一般构造的表面式加热器中,由于传热阻力的存在,给水不可能被加热到蒸汽压力下的饱和温度,不可避免地要存在一个端差,即加热器的加热蒸汽的饱和温度和给水加热后的温度之差。减小加热器端差的办法:一方面是加大加热器的受热面面积,另一方面在构造上设法尽可能利用蒸汽的过热度,这二者都会导致加热器造价的升高。目前我国制造的加热器端差一般为3-5℃。

108 、采用高压除氧器有什么优缺点?

答案:优点①除氧器是一个混合式加热器,高压除氧器在热力系统中运行,可以减少高压加热器的台数,节省材料;②高压加热器在运行中因故停运,有高压除氧器运行,对锅炉正常运行影响不大;③高压除氧器可以防止发生“自生沸腾”。缺点:给水泵在较高温度下运行,容易发生汽化,为此,需要抬高除氧器的安装位置或在给水泵入口增设前置泵。

109 、除氧器在运行中水位下降过快有哪些原因?

答案:①锅炉省煤器、水冷壁、过热器等部位的管子或给水管路泄漏;②锅炉排污水量过大;③除盐水补水量不足;④锅炉安全阀或除氧器溢流动作跑水;⑤运行人员误操作引起跑水。

110 、除氧器在运行中应达到哪些基本要求?

①必须将除氧水加热到除氧器内加热蒸汽压力下的饱和温度,这是使气体从水中分离出来的必要条件;②必须及时把从水中分离出来的气体排出去;③采取措施减少汽水损失,使补充水率尽量控制在规定的标准范围内,保持稳定;④并列运行除氧器的负荷分配应均匀,防止除氧器过负荷;⑤给水箱的水位应保持在规定的正常变化范围内。

111、低加的投入操作步骤。

答案:

①确认低压加热器处于完好状态,检查各表计指示准确,水控联动装置已投入。

②开启低加进水门,确认无泄漏,开启低加出水门,关闭低加水侧旁路门。

③检查低加直放门处于关闭状态,开启疏水出口门,旁路门,关闭疏水入口门。

④开低加进汽门3~4圈,对低加暖体,稍开低加抽空气门,并注意真空的变化。低加暖体10~15分钟后,全开进汽门,关闭低加疏水旁路门,低加水位上升至正常水位时,开启低加疏水入口门,用疏水入口门调整低加水位至正常。缓慢全开低加疏水至凝汽器截门。

112 、发电机解列,甩去全部负荷,危急遮断器未动作的象征及处理步骤 。

答案:

象征:

负荷指示为零,各段抽汽逆止门自动关闭,调节汽门关闭后重新开启,汽

轮机转速在危急遮断器动作转速之内先上升后下降。

处理:

A、控制转速在3000r/min;

B、及时解列供热机组热负荷,关闭真空母管隔离门;

C、调整轴封汽压在规定范围内,及时投入后缸喷水减温;

D、开启凝结水再循环门,关小凝结水至除氧器截门,保持热井水位;

E、解列三抽至除氧供汽及门杆漏汽;

F、停低加疏水泵、高低压加热器疏水按串联方式倒至凝汽器;

G、注意蒸汽参数的变化,全面检查一切正常,向电气发出“注意”、“可并列”信号,汇报值长,准备接带负荷。

113 、凝汽器-1 侧投入胶球的操作步骤。

答案:①检查-1侧凝汽器投入运行,无检修工作,胶球清洗系统正常备用;

②检查胶球清洗泵停运状态,胶球泵出口电动门关闭,装球室出口电动门关闭;

③开启装球室上部放气门、下部放水门放净存水泄压;打开装球室上盖;

④装入适量胶球后关闭装球室上盖,关闭下部放水门;

⑤将装球室清洗手柄打至清洗位置;

⑥缓慢稍开装球室出口电动门,待上部放气门出水后关闭放气门;

⑦开启胶球泵入口手动门及装球室出口手动门;

⑧启动胶球泵,开启胶球泵出口电动门;

⑨检查系统运行正常。

114 、凝汽器在运行中半侧检修结束后,如何恢复运行?

答案:①检查检修完的设备已恢复,检修侧的端盖和人孔门已关闭;

②关闭凝汽器检修侧的放水门,稍开凝汽器检修侧的循环水出水门,向凝汽器检修侧返水排气。当排气管冒水后,关闭排气门后全开凝汽器循环水出水门;

③开启凝汽器检修侧循环水进水门,注意冷油器出口油温、发电机入口风温变化并进行调整;

④注意凝结水水质变化,一旦水质恶化,应立即停止投入运行,解列后重新检查;

⑤通知监盘人员注意凝汽器真空变化,缓慢开启凝汽器检修侧抽空气门,当凝汽器真空恢复至正常后,可以进行增加负荷操作;⑥视循环水压力及真空变化情况,决定是否增启循环水泵。

115 、盘车装置的投入步骤。

答案:(1)全面检查符合启动条件;

(2)启动排烟风机运行;

(3)启动交流润滑油泵或高压电动油泵运行,润滑油压正常,回油畅通,投入直流润滑油泵联锁;(4)开启盘车润滑油门;

(5) 拔出销子逆时针旋转盘车手轮,向工作位置(发电机方向)推动手杆,直到进入工作位置(大约与水平成45°);

(6)按盘车启动按纽,盘车投入运行;

(7)检查盘车电流正常后,投入盘车联锁。

116 、汽轮机的主油箱有何作用?

答案:汽轮机的主油箱对汽轮机油的净化有重大意义。从汽轮机流回油箱中的油夹杂有空气和机械杂质,这些杂质可能是轴瓦、调速油阀、盘车装置磨损后的产物,也有可能是制造安装检修时遗留在轴承箱及油系统中的焊渣、金属氧化皮等。有时轴端漏汽,油中还会混入一部分水分,这些杂质都可以在油箱中加以过滤、沉淀、分离,以免再次被送入油系统中去。

117 、汽轮机起动冲转后要特别注意检查什么?

答案:检查各轴承油流和振动情况;调速、润滑油压应正常;注意保持凝汽器热井的水位,利用再循环进行调节;对前后汽封及汽缸内要仔细倾听声音;注意凝汽器真空变化;控制进汽量,维持汽轮机转速稳定暖机;注意监测汽缸壁温的变化情况。

118 、汽轮机润滑油冷油器由-1 切换至-2 的操作步骤。(-2 冷油器在检修结束尚未恢复状态)?

答案:①首先检查-2冷油器检修工作票已终结,现场悬挂禁止操作牌收回;②开启-2冷油器油侧放空气门,稍开启-2冷油器出口油门,往-2冷油器油侧充油,待油侧放空气门有油放出后关闭放空气门,全开油侧出口油门;③开启水侧放空气门,稍开进口水门,水侧充水,待放空气门有水流出后检查应无油花,再关闭水侧放空气门;④将水侧进口水门全开;⑤缓慢开启油侧进口油门,同时缓慢开启水侧出口水门,控制润滑油压稳定,两冷油器出口油温不大于2℃;⑥逐步全开-2冷油器进口油门,调整水侧出水门控制油温、油压稳定;⑦检查-2冷油器投入正常后,先关闭-1冷油器进口油门,再关闭-1冷油器出水门,注意控制油温、油压稳定;⑧至-1冷油器进油门、出水门全部关闭。-1冷油器维持备用状态。

119 、汽轮机油系统着火应如何处理?

答:①发现油系统着火时,要迅速采取措施灭火,通知消防人员并汇报领导。②尽力控制火势,使火势不蔓延至回转部位及电缆处。③如无法扑灭,威胁机组安全时,应破坏真空紧急停机。④视情况,开启事故放油门,在转子未静止前,维持最低油位。⑤油系统着火紧急停机时,禁止起动高压油泵。

120 、汽轮机运行中发生异常振动的原因及处理步骤。

答案:原因:油温异常,引起油膜振荡;进入轴瓦油量不足或中断,或有杂物油膜破坏;蒸汽参数、机组负荷骤变;两侧主汽门、调门开度不一致,蒸汽流量偏差大;汽缸两侧膨胀不均匀;滑销系统卡涩;汽缸金属温差大引起热变形或大轴弯曲;轴封损坏或轴端受冷而使大轴弯曲;叶片断落和隔板变形;转子部件松动或转子不平衡;推力瓦块损坏,轴向位移增大或轴瓦间隙不合格;前轴承箱内运转部件脱落;汽轮发电机中心不正常或起动时,转子弯曲值较大,超过规定值;凝汽器真空低;发电机励磁机引起振动;汽轮发电机组各轴瓦地脚螺丝松动;油中含有杂质,使轴瓦钨金磨损或油中进水、油质乳化。

处理:①发现轴承振动逐渐增大,测轴振超过报警值应汇报值长,设法消除振动,如轴振超过极限值,应立即停机;② 运行中突然听到机组内部发生冲击声,或凝结水导电率突然增大,同负荷下监视段压力升高,振动明显增大,应立即破坏真紧急停机;③当轴瓦振动变化±0.015mm或轴振变化±0.05mm应查明原因设法消除,当轴瓦振动突然增至0.08mm时,应立即打闸停机;④若负荷变动引起,应降低负荷直至振动消除;⑤如不能直接查清振动原因,应采取降低负荷的措施,若振动或异声仍不能消除,汇报值长、有关领导共同研究处理。

121 、汽轮机在冬季运行时在凝汽器循环水出口侧往往要积存空气,其原因和危害是什么?

答案:汽轮机在冬季运行时,当机组带负荷较小而冷却水入口温度又较低时,由于通过凝汽器的循环水量较小,流速低,冷却水在凝汽器中的温度升高,溶于循环水中的气体被分离出来,积存在凝汽器循环水出口水室的最高处形成气囊。随着积存空气量的增加,气囊增大,妨碍冷却水通过,使凝汽器真空下降。在冬季低负荷运行时,应定期对凝汽器水侧进行放空气。

122 、汽轮机轴向位移增大该如何处理?

答案:①轴向位移大报警,应检查推力瓦温度,回油温度,差胀,振动变化情况;仔细倾听汽轮机内部声音;②当轴向位移增大至+0.8mm/-1.2mm,机组应降低负荷运行,直至报警消失,查找原因;③当轴向位移增大至+1.2mm/-1.6mm,汽机应自动脱扣,否则应手动停机;④负荷或蒸汽参数骤变,应迅速稳定负荷,调整蒸汽参数;⑤如机组轴向位移上升并伴有不正常的响声、剧烈振动,应按紧急停机处理;⑥汽轮机推力瓦温度任何一点上升到110℃时,应立即破坏真空紧急停机。

123 、汽轮机转子惰走曲线大致分哪三个阶段?

答:①第一个阶段是刚打闸后阶段,转速下降很快,因为刚打闸时汽汽轮发电机转子惯性转动速度仍很高,鼓风磨擦损失很大。②第二个阶段转子的能量损失主要消耗在克服调速器、主油泵、轴承等的磨擦阻力上,这比磨擦鼓风损失小得多,并且此项磨擦阻力随转速的降低而减小,故这段时间转速降低较慢,时间较长。③第三个阶段是转子即将静止的阶段,由于此阶段中油膜已破坏,轴承处阻力迅速增大,故转子转速很快下降并静止。

124 、 如何减少管道的压力损失?

答:①选用合理的工质流速。②尽可能减少管道的连接件,尽可能减少管道中局部阻力损失,减少不必要的阀门、弯头、三通、大小头、节流孔板等管道附件。③选择绝对粗糙度较小的管村。④应尽可能缩短管道总长度。⑤选用局部阻力损失系数较小的附件。

125 、为防止离心泵入口发生汽蚀,应采取什么措施?

答案:①改进离心泵叶轮的几何形状;②减小离心泵吸入管路的压力损失;③采用合理的吸上高度;④在叶轮入口前设置前置泵或诱导轮来提高抗汽蚀性能;⑤采用抗汽蚀材料。

126 、叙述紧急停机的操作步骤?

答案:1 手拍危急遮断或手动停机按钮,关闭真空母管隔离门(快关阀),检查自动主汽门、调节汽门、低压油动机、各抽汽逆止门、三抽快关阀应关闭,检查确认汽轮机转速下降;2 向电气发“注意”、“汽机危险”信号;3 启动高压电动油泵;4 停真空泵,开真空破坏门;5 关电动主汽门,退回启动阀手轮;6转子静止,真空到零,停轴封供汽,记录惰走时间,投入连续盘车;7 完成其它停机操作。

127 、 冷油器投入操作步骤?

答案:①微开进口油门,开油侧放空气门,放尽空气后关闭放汽门,缓慢全开进口油门。②微开进口水门,开水侧放空气门,放尽空气后关闭放气门,缓慢全开出口水门。(若发现水中有油花,则说明该冷油器泄漏,不能投用)。③缓慢全开出口油门,根据冷油器出口油温,调节冷油器进口水门,油温在40±5℃,与运行冷油器出口油温相差不超过2℃。

128 、造成汽轮机热冲击的原因有哪些?

答:①起动时蒸汽温度与金属温度不匹配。②极热态起动时造成的热冲击。③负荷大幅度变化造成的热冲击。④汽缸、轴封进水造成的热冲击。

129 、为什么规定打闸停机后要降低真空,使转子静止时真空到零?

答:①停机惰走时间与真空维持时间有关,每次停机以一定的速度降低真空,便于惰走曲线进行比较。②如惰走过程中真空降得太慢,机组转速至临界转速时停留的时间就长,对机组的安全不利。③如果惰走阶段真空降得太快,尚有一定转速时真空已降至零,后几级长叶片的鼓风磨擦损失产生的热量多,易使排汽温度升高,也不利于汽缸内部积水的排出,易造成金属的腐蚀。④如果转子已经停止,还有较高真空,这时轴封供汽又不能停止,也会造成上下缸温差增大和转子变形不均发生弯曲。综上所述,停机时最好控制转速到零,真空到零,实际操作用真空破坏门控制。

130 、 主汽压力,温度同时下降应注意什么问题?

答:①主汽压力,温度同时下降时,应联系锅炉运行人员,要求恢复正常,并汇报值长要求降负荷。②汽温,汽压下降的过程中,应注意高压缸胀差,轴向位移,轴承振动,推力瓦温度等数值,并严格监视主汽门,轴封,汽缸结合面是否冒白汽或溅出水滴,发现水冲击时立即停机。③主汽压力温度同时下降,虽有150℃过热度,但主蒸汽温度低于调节汽室大部温度50℃以上时汇报值长,要求故障停机。

131 、什么是监视段压力?

答:调节汽室压力及各段抽汽压力统称监视段压力,凝汽式汽轮机除末一、二级以外,调节汽室压力及各段抽汽压力与蒸汽流量近似成正比关系,运行中监视这些压力的变化可以判断新蒸汽流量的变化,负荷的高低及流通部分是否结垢,损坏及堵塞等。

132 、何为油膜振荡?防止油膜振荡可采取哪些措施?

答:油膜振荡是轴颈带动润滑油高速流动时,高速油流反过激励轴颈,使其发生强烈振动的一种自激振动现象。措施:①增加轴承的比压,可以增加轴承的载荷,缩短轴瓦长度,以及调整轴瓦中心来实现。②控制好润滑油温,降低润滑油的粘度。③将轴瓦顶部间隙减小到等于或略小于两侧间隙之和。④各顶轴油支管上加装逆止门。

133 、为什么热态起动时先送轴封后抽真空?

答:热态起动时,转子和汽缸金属温度较高,若先抽真空,冷空气将从轴封处进入汽缸,而冷空气是流向下缸的,因此下缸温度急剧下降,使上下缸温差增大,汽缸变形,动静产生磨擦,严重时使盘车不能正常投入,造成大轴弯曲。

134 、何为油膜振荡?防止油膜振荡可采取哪些措施?

答:油膜振荡是轴颈带动润滑油高速流动时,高速油流反过激励轴颈,使其发生强烈振动的一种自激振动现象。措施:①增加轴承的比压,可以增加轴承的载荷,缩短轴瓦长度,以及调整轴瓦中心来实现。②控制好润滑油温,降低润滑油的粘度。③将轴瓦顶部间隙减小到等于或略小于两侧间隙之和。④各顶轴油支管上加装逆止门。

135 、真空系统灌水试验应注意什么?

答:真空系统灌水前,应保证凝汽器内部检修工作结束,处于灌水水面以下的真空表计全部切除。凝汽器底部支持弹簧为了防止受力变形需加临时支承,然后方可灌水。试验完毕放水后,应拆除临时支撑。

136 、自动主汽门的作用是什么?

答:自动主汽门的作用是在汽轮机保护装置动作后,迅速地切断汽源,并使汽轮机停止运行,因此,它是保护装置的执行元件。

137 、造成大轴弯曲的原因是什么?

答:①动静部分磨擦,装配间隙不当,启动时上下缸温差大,汽缸热变形,以及热态启动大轴存在热弯曲等,引起转子局部过热而弯曲。②处于热态机组,汽缸进冷汽,冷水,使转子上下部分出现过大的温差,转子热应力超过材料的屈服极限,造成大轴弯曲。③转子原材料存在过大的内应力,在高温下工作一段时间后,内应力逐渐释放而造成大轴弯曲。④套装转子上套装件偏斜,卡涩和产生相对位移。有时叶片断落,转子产生过大的弯矩以及强烈振动,也会使套装件和大轴产生位移,造成大轴弯曲。⑤运行管理不严格,如不具备启动条件而启动,出现振动及异常处理不当,停机后汽缸进水等,造成大轴弯曲。

138 、机组采取滑压运行的经济效益从何而来?

答:1)在机组低负荷时,降低蒸汽压力,便于维持稳定的蒸汽温度,虽然蒸汽的过热焓因压力下降而降低,但饱和蒸汽焓上升较多,总焓值明显升高,构成了滑压运行经济性的主要来源;
    
2)给水压力相应降低,给水泵转速降低,减少了给水泵的能量消耗和寿命消耗;
    3)汽压降低,汽温不变时,汽轮机各级容积流量、流速近似不变,可保持内效率不下降;

   
 4)高压缸各级和高压缸排汽温度有所升高,有利于保证再热汽温度,从而改善循环效率。

139           、凝结水再循环的作用是什么?        

答:1)保护凝结水泵,防止流量过低而汽化;

2)对低加及汽封冷却(加热)器起保护作用。

140           、汽机旁路系统的作用主要有哪些?        

答:1)汽机冲车前投运旁路保证锅炉的最低蒸发量;

2)机组启停或甩负荷时投运旁路可起到保护锅炉再热器(防止干烧)作用; 

免费打赏

相关推荐

APP内打开