风之谜——高尔夫与赛格振动
kwcqmpyt
kwcqmpyt Lv.2
2021年06月28日 09:27:08
只看楼主

高尔夫球借助空气流动提高其飞行能力,大楼通过抗风设计减小风振影响。看似两个风马牛不相及的事,被神秘的风连在一起。 一、高尔夫球 气流(The airflow) 研究高尔夫球的飞行,从球的角度着眼易于了解球和空气的相互作用。因此与其顺着球在空气中运行的思路,我们不如将球看成静止的,而空气环绕其流动。图4.1为截面图,图4.2为三维图,我们可以看到气流在球表面上的流动。

高尔夫球借助空气流动提高其飞行能力,大楼通过抗风设计减小风振影响。看似两个风马牛不相及的事,被神秘的风连在一起。

一、高尔夫球

气流(The airflow)

研究高尔夫球的飞行,从球的角度着眼易于了解球和空气的相互作用。因此与其顺着球在空气中运行的思路,我们不如将球看成静止的,而空气环绕其流动。图4.1为截面图,图4.2为三维图,我们可以看到气流在球表面上的流动。

达朗波特悖论(D’Alembert’s paradox)

考虑最简单的气流的流体理论我们会发现气流模式恰如图4.1。然而,令人惊讶的是,当法国数学家达朗波特于18世纪研究这个气流时发现这时没有阻力存在。从图中可知,下部气流与上部气流是一样的,这意味着空气对球没有作用力。这个问题被叫做达朗波特悖论。

简单的流体理论忽略了空气的黏滞性,当认识到这一点时达朗波特悖论得以解决。我们更熟悉的是液体的黏滞性,如石油。很明显,空气黏性低,在空气中高尔夫球的减速问题是一个谜。

斯托克斯模型(Stokes’s model)

围绕球的黏滞流动模型于19世纪由爱尔兰物理学家斯托克斯提出。这个模型正确地假设了球表面的流速为零。离开这个球流动是一样的,不受球存在的影响。这两个区域之间的流动由黏滞性控制。

在斯托克斯模型中球在液体中的流动是平顺的,球的黏滞效应扩展到与球大小相同的范围。实际上这个理论不能解释速度大于4英尺/小时的球的运动。很显然对于高尔夫球没有实用价值,我们需重新考虑。
那么高速时会有什么发生?斯托克斯理论预测随着速度的增加受黏滞性影响的区域减少,对于我们感兴趣的速度,如100英里/小时,黏滞效应被限制在球表面小于1毫米厚度的区域。凭想象这么薄的层其影响应该可以忽略,而事实上,这个层的性质很关键。

边界层(The boundary layer)

绕固体黏滞流动的全部问题的解决由普朗特(Prandtl)于20世纪初完成。围绕表面的薄黏滞层称为边界层。普朗特解释边界层不是围绕球一直连续下去,而是在球后表面会产生分离,如图4.3。这个流动的分离在球后会产生尾流。尾流中的空气是湍动的,这个过程中它的速度会降低。球对减慢的空气的反应是球阻力的来源。为知道这是如何发生的我们需要了解当空气绕球流动时空气速度是如何变化的,及这个变化与空气压力变化的相关性。这个引导我们指向白努力理论,一个瑞士数学家。这个理论揭示了速度和压力的关系。

白努力效应(The Bernoulli effect)

图4.4显示理想气流的流线。如果我们看围绕球的流线,我们会看到当空气绕球边流动时它们会挤作一团。空气流过变窄了的气流通道时,它必须流的快一些。空气接近球的侧面时流动加快,然后流到球后速度降下来。加速到高速的空气,会产生压力差。球前的压力比侧面高,空气加速压力降低。类似地球后空气速度变慢压力再次增加。速度与压力的这个关系由白努力建立。


气流的分离(Separation of flow)

现在回到球表面气流分离的真实状态,我们要问为什么会有分离发生。像我们已经看到的,压差出现以加速和减速气流,但边界层的黏滞性也使空气流动减慢。这使得气流的前后不对称。空气在到达球后前停止,气流从球表面分离。
这个效应可与一辆从山坡上自由滑向山谷的自行车做比较。到达谷底之前自行车一直在加速。如果自行车继续自由滑行驶向另一侧,由下坡产生的动能将逐渐耗尽,自行车最后将停下来。如果没有摩擦自行车将达到与它出发时一样的高度,但摩擦的存在使它会提前停下来。
类似地,边界层的空气加速通过时压力减小,减速通过时压力增加。黏滞性使得这些区域的气流产生不平衡,空气不能最后到达球的后面。图4.6显示空气如何向前运动减慢,气流进而形成涡流。

湍动的尾流(The turbulent wake)

分离后的气流是不规则的。图4.7说明球后形成的限定在尾流区域的湍动的涡流。流动的涡流具有动能,它来自于球的能量损失,对球表现为阻力使其减速。随着球速的增加,初始阻力随球速的平方增加。
涡流的不稳定性会使高尔夫球呈横向运动,此即冯.卡门的“横向涡街”。那么,我们看到的球,为什么在飞行时没有出现上下漂浮呢?

二、桥梁

塔卡马大桥

桥梁属于高柔物体,竖向和横向的自振频率都很低。桥体风致响应的振动为横向风引起的竖向振动。由于桥体很长,各处振动不一致,这一振动会表现为桥梁整体的弯扭振动(图11)。桥梁振动的名词也最多,包括涡振、颤振、抖振、池振。因此就连冯.卡门和达文波特这样的超级大佬面对塔科马大桥的事故也会陷入涡振和颤振的纷争之中。

(a)

(b)

(c )

(d)

图11  塔卡马大桥风振破坏


对于塔科马大桥破坏的原因,目前较一致的观点是微风下产生了卡门涡街振动,如图11(c),风横向通过桥梁时产生的现象与图4.7是一致的。本项目最初的设计为图11(d),桥体为桁架梁,风可以穿过桁架故不会产生涡振。后来实施时修改了设计,将桥体由空腹改为实腹,并降低了桥梁断面的高度。这样做的结果不但降低了桥梁的横向振动刚度,而且风经过实腹梁时形成卡门涡街(图11(d))。涡振引起桥梁板上下振动,而沿长度方向这种振动的不均匀使得桥梁板产生了扭转振动,最后导致桥梁破坏。

虎门大桥

2020年5月5日虎门大桥发生振动。该桥为大跨度钢箱梁悬索桥,属于典型柔性结构。大桥维护时沿桥梁边护栏设置了水马,由此改变了钢箱梁外形,使桥体扁平的迎风面高度加大,横向风振呈涡振类,这样就发生了微风下(5级风)的横向风振,桥梁界称之为涡振。

三、飞机

飞机设计初期,机翼时常遭受风振破坏,造成机毁人亡。飞机的振动一般称为颤振。

四、房屋

高层建筑受风振影响最大的通常为横向风振,即风绕过建筑物时产生漩涡脱落,其不一致性引起建筑物发生与风向垂直方向的振动,因此这一振动与桥梁的涡振类似。

台风山竹吹的高楼晃?专家:风振效应无危险


综上,风引起物体的振动的现象虽然复杂,理论门派也众多纷纭,但归纳起来,还是一个风与物体耦合振动问题,其本质是一样的。

五、赛格的猜想

赛格大厦高355.8m,75层,结构体系为钢结构内筒外框结构 内筒井字形剪力墙。


赛格大厦50年风层间位移角1/600 ,介于钢结构与混凝土结构之间,因而与同高度的混合结构相比,结构偏柔。赛格大厦第一自振周期为5.88s。
荷载规范,风对结构影响的强度设计考虑了顺风向、横风向、扭转风向及其组合。风对结构影响的舒适度设计考虑了顺风向和横风向。

顺风向风振

风振加速度与以下变量有关
ω R
m
η s :f 1 ,ζ 1


结构越轻(m越小),加速度越大;
阻尼比越小,加速度越大;
结构顺风向一阶周期越长(一阶频率越短),加速度越大;
顺风向风振只考虑结构的顺风向第一周期发生风振情况。


横风向风振

风振加速度与以下变量有关
ω R
m
S FL v H ,T L1
ζ 1
ζ a1
ζa1

结构越轻(m越小),加速度越大;
阻尼比越小,加速度越大;
加速度与S FL 的关系复杂;
横风向风振只考虑结构的横风向第一周期发生风振情况。

风振舒适度限值

中国规范按10年风计算舒适度。在加速度限值范围内,建筑物发生风振属正常现象,不影响结构安全。

(1)高规

(2)高钢规

(3)日本规范

本资料选自谢壮宁教授的文章

从上可见,日本规范采用一年风的舒适度限值,且其与结构振动频率有关。

中国规范舒适度计算未考虑风的频率与结构自振频率的共振性,也没有像日本规范那样将人的舒适度感觉与结构自振周期联系起来。

由此可见,风对结构的影响十分复杂。5月18日最大风力不超过5级,这个风力与舒适度10年风相比很小,按中国规范的横向风振计算不会发生舒适度问题。由此可见,中国风振设计是一种简化的包络设计,这里的逻辑是这种简化和包络可以涵盖其他复杂的工况情况。

六、高尔夫球(续)

临界速度(The critical speed)

前面说到,涡流会对高尔夫球形成阻力。然而,随着球速的进一步增加会出现一个惊人地变化,达到某一临界速度之后阻力会有很不同的表现。
对于光滑的球,阻力可通过精确的实验测量。它允许我们计算高尔夫球大小的光滑的球的阻力,结果如图4.8。可以看到在250英里/小时有一个突变。实际上超过这个临界速度随着速度的增加阻力会立即下降,大约在速度刚刚过300英里/小时时,阻力降到先前值的1/3,随后再次上升。

高尔夫球的速度比这个临界速度低得多,因此,期望高尔夫球的阻力有大幅度降低是不现实的。然而,这个故事里存在着一个很大的转折,使得高尔夫球飞行时临界速度的性质成为关键因素。

球手的发现(The golfers’ discovery)

发现临界速度对高尔夫球重要性源自十九世纪。早期高尔夫球是由羽毛填充制成的皮球,大约在1850年树脂球出现。球由叫做杜仲胶的天然树脂做成,很便宜。球表面光滑很硬。很不幸树脂球没有毛皮球飞得远。但很奇怪,随着球变破,表面变粗糙,球飞的远了。很自然,要做的事是将新球表面打造粗糙而不是等球被打旧。
马上人们将目标转到球的生产过程,最简便的方式是将其表面直接制成粗糙。用一个球,在其表面撞击出荆棘的外观。之后,1908年,英国工程师威廉姆.泰勒发明了一项专利,一个倒置的荆棘的模子内布满小坑。虽然小坑的形式已发生了变化,现代高尔夫球的基本性质与泰勒的发明是一样的。
这些高尔夫球在设计上的进展完全凭经验,潜在的物理学完全是个谜。我们现在知道对其的解释为前面说的极限速度。我们将看到,表面粗糙可使极限速度显著降低。现代的有小坑的球临界速度为30英里/小时,这意味着超过这个速度高尔夫球的阻力将减少。这个性质特别令人惊讶,直觉会使人觉得球表面粗糙度增加会增加阻力。
图4.9给出高球阻力与速度的关系,并与同样大小的光滑球作比较。可以看到对于我们感兴趣的速度,小坑使阻力降低一倍。例如,一个速度100英里/小时的高球阻力由1/5磅减小到1/10磅。这一减少很重要,因为对于一个100英里/小时的球,阻力减少了一个球的重量,高球重1.6盎司,即1/10磅。
我们现在知道有两个事需要验证。其一是临界速度时球阻力下降的原因是什么?其二是为什么粗糙表面可以降低临界速度?

临界速度时发生了什么?(What happens at the critical speed?)

超过临界速度后,阻力的变化由气流形式的变化引起。此时,光滑球表面的狭窄的边界层变为不稳定,如图4.10。这时边界层外流速快的空气与球表面流速慢的空气出现湍流混合,并在分离前流向球后。这使得尾流变小阻力减少。

不稳定与湍流混合的出现依赖于球表面的粗造度。高球表面的小坑搅乱了空气的流动,导致边界层湍流过早出现和较低的临界速度。高球有400个小坑。小坑很浅,只有1/100英寸,但足以影响厚的多的边界层。
阻力减少这一偶然发现改变了高尔夫的性质。没有小坑,一个长打的距离将减少100码。然而,虽然在球的飞行中阻力效应很重要,但它仅是故事的一半。由球的旋转与气流的相互作用引起的升力是同等重要的,我们将在下面加以论述。

高尔夫球的升力(lift)

球离开杆头时带有高速旋转。拽五击球将产生60转/秒的倒旋,高角度的铁杆产生的旋转是这个的两倍。旋转的主要效果是在球上产生一个与旋转轴和球运动方向垂直的力。拽五产生的倒旋和球向前的速度合成为一个向上的力,这个力大于球向下的重力。这种情况下,球初始飞行的弧线是向上的而不是向下。
首先我们回顾一下边界层的气流随着空气流过球表面而减速这一现象。其结果是气流不能到达球的后面,在表面出现分离。一个旋转的球,在旋转方向与气流运动方向同向的一侧(图5.3的球的上部一侧),边界层的黏滞力会在球上产生更大的压力。这引起该侧的分离延迟并允许气流继续绕球表面向前运动。另一侧分离照常。这个不对称扭曲了整个气流模式,如图5.3,可以看到气流和尾流偏向一侧。

上部气流路径长,因而当它与同时刻的下部气流会合时,它的流速会快些。根据白努力原理,球上部的压力小于下部的压力,压力差将使球向上运动。这就相对于空气提供给球一个向上的升力,如图5.4。
高尔夫击出的球会产生倒旋,倒旋在球上引起升力。

升力是多少?(How much lift? )

正如我们已经看到的,高尔夫球的升力物理学包含一个很复杂的过程。在相关的速度范围边界层变成湍流,两侧不同的分离导致偏离的湍流尾流。因而,没有简单的升力大小的计算方法,它随旋转和球速变化。所以,我们的知识来源于试验。
经典的工作由熊人(Bearman)和哈维(Harvey)完成,他们在风洞里进行了阻力和升力的量测。一个典型的60转/秒的拽五给出的升力随速度的变化见图5.7。由于拽五可以击出160英里/小时的球速,可以看到升力很容易超过球重。这意味着在球飞行的初期,球不是很慢时,表现出仿佛它具有负重量。

球的旋转依赖于loft和杆速。一个杆头速度100英里/小时的拽五,球以30-70转/秒的旋转离开杆头,这个转速与loft有关,球速可达到140英里/小时。图5.8表示球的升力随旋转速度增加而增加。

七、赛格的猜想(续)

作为世界第一运动,高尔夫投入巨大,收获也相当丰厚。作为人类赖以生存和工作的房屋,更是承载着保护人类生命安全的重责。将这两件事联系在一起进行对比分析,更能使我们结构工程师认识到职责所在,鞭策我们只有努力再努力,才有可能赶上时代的步伐。
至此,对赛格大厦风振,做如下猜想:
(1)风场远比规范所考虑的工况复杂,风至结构振动不仅仅是顺风向或横向风的单向振动,更可能是一种复合振动。虽然这种振动不能准确算出,但规范给出的计算方法作为一种包络设计,大概率保证了结构安全和舒适度。
荷载规范按10年风计算建筑物的横向风振加速度,考虑的是结构第一频率。
那么,赛格风振会不会还有另一种原因:微风下,当风的频率与建筑物的第一频率相近,发生了建筑物的横向风振,就像塔卡马大桥和虎门大桥那样?
(2)楼顶桅杆共振引起大楼高阶振动。桅杆振动基频为2赫兹,当桅杆发生横向风振时,可能激发出建筑物的高阶振型(对应高频)。从日本规定可以看出,建筑物的高频振动会使人在不大的加速度下感到不适。这给我们一个提示:在满足中国规范风振舒适度计算的情况下,不大的振动加速度同样会使人感到不舒适,这是不是要求风振计算要将建筑物振动频率与舒适度限值联系起来?

 

深圳赛格广场  

 

防桅杆风振措施


将相本无种  结构当自强
免费打赏
加倍努力
2021年06月30日 08:23:09
2楼

很好的资料,学习了风之谜——高尔夫与赛格振动的原理,多谢了。

回复

相关推荐

APP内打开