第一为了克服热载流子注入(HCI)效应而发展出漏端轻掺杂(LDD)工艺与结构,LDD结构可以降低器件漏端在沟道下的峰值电场强度,从而改善因器件长时间使用带来的载流子注入 造成器件的I-V特性漂移的问题。但是LDD结构结深很浅,在深亚微米技术中,LDD结构结深只有0.02um,源和漏端的LDD结构相当于两个“尖端”。如果把这种具有LDD结构的器件用 于设计输出缓冲级电路,ESD(Electro Static Discharge - ESD)很容易通过“尖端放电”击毁它们。
第一为了克服热载流子注入(HCI)效应而发展出漏端轻掺杂(LDD)工艺与结构,LDD结构可以降低器件漏端在沟道下的峰值电场强度,从而改善因器件长时间使用带来的载流子注入
造成器件的I-V特性漂移的问题。但是LDD结构结深很浅,在深亚微米技术中,LDD结构结深只有0.02um,源和漏端的LDD结构相当于两个“尖端”。如果把这种具有LDD结构的器件用
于设计输出缓冲级电路,ESD(Electro Static Discharge - ESD)很容易通过“尖端放电”击毁它们。
第二为了降低CMOS器件漏端、源端和栅端的接触电阻和薄层方块电阻,而发展出的精神硅化物Polycide和Silicide工艺;在更先进的工艺中把Silicide与Polycide一起制造,称为
Salicide工艺,它可以有效的提高集成电路的运算速度。Salicide工艺技术可以在有源区和多晶硅表面形成低阻的Salicide薄膜。如果发生ESD现象,ESD电流会首先沿着低阻的
Salicide薄膜流动,ESD的大电流会造成Salicide金属表层发热直接烧毁器件。
第三为了降低器件的阈值电压和工作电压,从而降低功耗和提升集成电路的运算速度,栅氧化层越来越薄。但是随着栅氧化层厚度的不断降低,它的击穿电压也不断降低,它更容
易被ESD损伤,因为很小的ESD电压就可以击穿栅氧化层。
第四为了不断提高器件的速度和频率,沟道长度不断按比例缩小,同时单个芯片的成本也会更低,但是沟道长度变小会使器件的源漏穿通电压变小,很容易产生ESD通路,并被ESD
电流烧毁。