Lv.1
关注
0
粉丝
0
+关注
私信
抢红包
全部
帖子
资料
课程
深 度 学 习 研 究 综 述
摘 要 : 深 度 学 习 是 一 类 新 兴 的 多 层 神 经 网 络 学 习 算 法 , 因 其 缓 解 了 传 统 训 练 算 法 的 局 部 最 小 性 , 引 起 机 器 学习 领 域 的 广 泛 关 注 。 首 先 论 述 了
基于多模态对抗学习的无监督时间序列异常检测
摘要:时间序列异常检测旨在发现对应时序特征中不符合一般规律的特异性模式,是机器学习领域重要的研究方向之一.然而,现有的时序异常检测方法大多为单模态学习,忽略了时序信息在多模态空间上不同特征分布的关联性和互补性,不能充分利用已有信息进行有效地
大数据建模、分析、挖掘技术
2022年8月5日— 2022年8月9日 北京(同时转线上直播) (5 日报到,6 日-9 日上课) 1.掌握大数据建模分析与使用方法。 2.掌握大数据平台技术架构。 3.掌握国内外主流的大数据分析与 BI商业智能分析解决方案。 4.掌握大
迁移学习(Transfer Learning)核心技术 开发
1.深入了解神经网络的组成、训练和实现,掌握深度空间特征分布等关键概念; 2.掌握迁移学习的思想与基本形式,了解传统迁移学习的基本方法,对比各种方法的优缺点; 3.握深度迁移学习的思想与组成模块,学习深度迁移学习的各种方法; 4.掌握深度迁
计算机视觉与信息取证技术讲解
今晚 20:00--22:00 人工智能技术与咨询 计算机视觉就是用各种成像系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力。要
大数据建模、分析、挖掘技术应用
1.掌握大数据建模分析与使用方法。 2.掌握大数据平台技术架构。 3.掌握国内外主流的大数据分析与 BI商业智能分析解决方案。 4.掌握大数据分析在搜索引擎、广告服务推荐、电商数据分析、金融客户分析方面的应用。 5.掌握主流的基于大数据 H
递归神经网络(RNN)
递归神经网络(RNN) RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKey keyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程
序列数据和文本的深度学习
序列数据和文本的深度学习 ·用于构建深度学习模型的不同文本数据表示法: ·理解递归神经网络及其不同实现,例如长短期记忆网络(LSTM)和门控循环单元(Gated Recurrent Unit,GRU),它们为大多数深度学习模型提供文本和序列
机器学习基础
机器学习基础 本章涵盖了以下主题: ·分类和回归之外的其他类型的问题; ·评估问题,理解过拟合、欠拟合,以及解决这些问题的技巧; ·为深度学习准备数据。 请记住,在本章中讨论的大多数技术都是机器学习和深度学习通用的,一部分用于解决过拟合问题
深入了解神经网络
深入了解神经网络 本章将介绍用于解决实际问题的深度学习架构的不同模块。前一章使用PyTorch的低级操作构建了如网络架构、损失函数和优化器这些模块。本章将介绍用于解决真实问题的神经网络的一些重要组件,以及PyTorch如何通过提供大量高级函
APP内打开