离心泵的工作原理和结构分别是什么
离心泵是叶片泵的一种。这种泵是靠叶轮旋转时,叶片拨动液体旋转,使液体在惯性离心力的作用下而工作的,所以叫离心泵。 1.离心力 离心泵是靠离心力工作的。什么是离心力?在日常生活中离心力的例子很多,当乘坐的汽车快速转弯时,好像有一种力向外拉;用绳子拴一块石头,用手拿着绳子的另一端使石头作圆周运动,就会感到有一种向外的拉力等,这就是离心力。离心力就是物体旋转时,产生的一种使物体离开旋转中心的力。物体的质量越大,旋转的半径越长,转速越快,离心力也越大。 2.离心泵的工作原理 现以单级离心泵为例说明泵的工作原理。图2-1是简化了的离心泵工艺系统,它由离心泵、吸入和排出管、底阀、扩散管等组成。离心泵主要由叶轮、叶片、泵壳、泵轴、填料筒等组成。 离心泵工作前应先灌泵,使泵壳和吸入管内充满液体,当与泵轴联接电动机转动时,圃定在泵轴上的叶轮、叶片作旋转运动,泵壳内的液体也随着旋转并获得能量,从泵壳甩出,经(泵壳3内)流道、扩散管和排出阀门进入管道系统。与此同时,叶轮内产生真空,液体在大气压的作
卧式离心泵气蚀现象导致的危害
卧式离心泵在化工行业用途很广,当卧式离心泵出现气蚀现象,往往后果很严重,严重影响了化工安全。那么气蚀是如何产生的,会造成什么样的危害呢?来跟小编一起来了解一下吧。 当叶轮入口液体压力等于或低于该操作温度下其饱和蒸汽压时,就会有形成许多蒸汽与混合气体的小气泡。这些小气泡随着药液进入叶轮中高压区时,由于气泡周围液体的压力大于气泡内的蒸汽压,就使得气泡被击碎而重新凝聚。而同时周围液体就以极高的速度向这个空穴冲将,产生水力冲击及液体质点互相撞击,产生很高的局部压力,冲击叶片表面,产生一种机械剥蚀。这些汽化、凝聚、冲击和剥蚀的综合现象就称为离心泵的汽蚀现象。 汽蚀现象会造成卧式离心泵的危害: ( 1 )造成材料破坏。汽蚀发生时,由于机械剥蚀于化学腐蚀的共同作用,使材料受到破坏。由于汽蚀现象的复杂性,所以其形成机理直到现在仍在研究探讨中。一般认为水力冲击引起的机械剥蚀,是造成材料破坏的主要因素。 ( 2 )产生噪声和振动。汽蚀发生时汽泡的破裂和高速冲击会引起严重的噪声。另外,汽蚀过程本身
卧式单级离心泵的性能曲线及能量损失
卧式单级离心泵的性能曲线是在固定的转速下,离心泵的基本性能参数(流量、压头、功率和效率)之间的关系曲线。性能曲线是在固定转速下测出的,只适用于该转速,故特性曲线图上都注明转速的数值。性能曲线图上绘有三种曲线(现介绍两种):H-Q曲线;N-Q曲线。 一、H-Q曲线 变化趋势:离心泵的压头在较大流量范围内是随流量增大而减小的。不同型号的离心泵,H-Q曲线的形状有所不同。较平坦的曲线,适用于压头变化不大而流量变化较大的场合;较陡峭的曲线,适用于压头变化范围大而不允许流量变化太大的场合。 二、N-Q曲线 变化趋势:N-Q曲线表示泵的流量Q和轴功率iV的关系,N随Q的增大而增大。显然,当Q为零时,泵轴消耗的功率最小。启动离心泵时,为了减小启动功率,应将出口阀关闭。 卧式单级离心泵的能量损失 实际液体从泵人口到泵出口流动过程存在以下三种能量损失,这些能量损失使离心泵效率下降。 一、水力损失 液体流经所接触的流道总会出现表面摩
离心缩机的结构原理如何?
离心缩机的结构原理如何? 主轴带动叶轮高速旋转时,气体自轴向进入,并以很高的离心力被甩出叶轮,进入具有扩压作用的固定导叶中,在这里气体流速急剧下降,压力提高;随后,气体又被送人第二级中,进一步提高压力;以此类推。一直到额定压力。离心压缩机大力向着高压力发展,最高压力已达到70MPs以上,排气量应用范围也显著增大。作为代表性的高层多级离心式压缩机,有大型合成氨装置中的合成用压缩机和循环压缩机。空压机维修。此外,尿素装置中的二氧化碳压缩、乙烯工厂的裂解气压缩、以丙烯或乙烯作为制冷剂的冷冻机以及石油精制装置中的催化裂解等都广泛使用了各种离心压缩机。特别是压缩腐蚀性气体和有毒气体时,均采用离心压缩机。 离心压缩机还向着较小捧量的方向发展,这样就使得本来是属于容积压赞礼能领域,也开始使用了离心压缩机。例如:在国外,排气压力为0,8MPa(表压),吸人量为2000m3/h的压缩机已经离心化,最小排量达到l3m3/min。