(分享)有关振型的几个概念
振型参与系数:每个质点质量与其在某一振型中相应坐标乘积之和与该振型的主质量(或者说该模态质量)之比,即为该振型的振型参与系数。一阶振型自振频率最小(周期最长),二阶,三阶....振型的自振频率逐渐增大. 地震力大小和地面加速度大小成正比,周期越长加速度越小,地震力也越小。 自振振型曲线是在结构某一阶特征周期下算得的各个质点相对位移(模态向量)的图形示意.在形状上如实反映实际结构在该周期下的振动形态.振型零点是指在该振型下结构的位移反应为0。 振型越高,周期越短,地震力越大,但由于我们地震反应是各振型的迭代,高振型的振型参与系数小。 特别是对规则的建筑物,由于高振型的参与系数小,一般忽略高振型的影响。 振型的有效质量:这个概念只对于串连刚片系模型有效(即基于刚性楼板假定的,不适用于一般结构。)。某一振型的某一方向的有效质量为各个质点质量与该质点在该一振型中相应方向对应坐标乘积之和的平方((∑mx)2)。一个振型有三个方向的有效质量,而且所有振型平动方向的有效质量之和等于各个质点的的质量之和,转动方向的有效质量之和等于各个质点的转动惯量之和。 有效质