提高直流操作电源系统可靠性的技术措施
涛声依旧
涛声依旧 Lv.12
2013年05月08日 13:12:45
只看楼主

 直流操作电源(直流屏)设备是发电厂和变电站的二次电源,用于断路器分合闸及二次回路的仪器仪表、继电保护、控制、应急灯照明等。  随着科技的发展及用户要求的提高,近年来电力操作电源的主电路已逐步由原来的晶闸管相控型发展为高频开关型,而控制部分则由原来的模拟控制方式发展为由微机控制的数字控制方式,微机控制的应用使电力操作电源的运行自动化程度大大提高,并可实现四遥联网功能以满足电站无人值守的需要。但电力系统首要的要求是安全性、可靠性,因此微机控制器的可靠性及抗干扰能力就显得十分重要,笔者近年来一直从事电力操作电源微机控制器及其它微机系统的开发研究工作,现就这一问题作一阐述。

 直流操作电源(直流屏)设备是发电厂和变电站的二次电源,用于断路器分合闸及二次回路的仪器仪表、继电保护、控制、应急灯照明等。
  随着科技的发展及用户要求的提高,近年来电力操作电源的主电路已逐步由原来的晶闸管相控型发展为高频开关型,而控制部分则由原来的模拟控制方式发展为由微机控制的数字控制方式,微机控制的应用使电力操作电源的运行自动化程度大大提高,并可实现四遥联网功能以满足电站无人值守的需要。但电力系统首要的要求是安全性、可靠性,因此微机控制器的可靠性及抗干扰能力就显得十分重要,笔者近年来一直从事电力操作电源微机控制器及其它微机系统的开发研究工作,现就这一问题作一阐述。
  1微机电源
  电源是微机控制系统的能量供给源泉,电源的优劣直接影响着整个系统的稳定性与可靠性,同时电源也是外部干扰引入系统的主要途径,所以对电源处理的好坏是系统可靠运行的前提条件。控制器电源采用宽电压输入的直流进线开关电源,这样可由蓄电池直接供电,保证系统供电的不间断性。为抑制外部各类干扰由电源引入系统采取了如下多项措施。
  (1)TVP器件主要用于吸收电源网络中的瞬时浪涌电压,该器件在承受一个高能量的浪涌电压时,其阻抗立即降至很低,允许大电流通过,同时把电压钳位到预定水平,其承受瞬时浪涌电流的峰值可达数百安培,能吸收高达数千瓦的浪涌功率。
  (2)EMI滤波器主要用于抑制系统中的高频干扰,对于共模噪声,滤波器在电源线与地线间构成通路,可以把噪声电流引入大地。对于常模噪声,滤波器在线间构成通路,把噪声电流在线间短路,使其不影响电路工作。
  (3)铁氧体磁珠滤波器铁氧体对低频电流几乎没有什么阻抗,而对于较高频率的电流会产生较高的衰减作用。高频电流在其中以热量形式散发。
  (4)自恢复保险自恢复保险与常规保险的区别在于当线路电流过大时,自恢复保险的阻抗会大大提高,从而实现线路保护功能,而当线路电流正常时,又会恢复正常阻抗值,从而对瞬时干扰造成的线路过流具有很好的保护效果。
  2模拟量通道
  (1)现场模拟量输入对于电力操作电源,现场模拟量主要包括:交流进线和充电器的电压、电流,直流母线电压、电流,电池电压,各点温度以及对地绝缘等参数,由于工业现场环境的复杂性,这些信号往往叠加有各种干扰成分,如将这些信号直接引入系统,将对系统带来严重影响,甚至导致系统无法运行,故这些信号在输入系统前均通过隔离变送器,隔离变送器一方面将各种干扰成分隔离于系统之外,另一方面将这些信号调理成A/D转换输入的标准信号。另外为防止变送器对系统电源的影响,变送器均选择为前端无源型变送器。
  (2)模拟量输出直接控制充电器的工作参数,一旦出现故障,系统将无法正常运行,为保证其可靠性,采用隔离放大器输出,同时对于D/A 转换写入端加有硬件保护措施,保证只有当CPU正常运行时方可对D/A进行改写,当CPU出现故障时不会对输出造成影响,保证装置输出不至于出现混乱。
  3开关量通道
  现场开关量输入、输出与模拟量相似,也叠加有各种干扰成分,为消除这些干扰对系统的影响,必须采取隔离措施,开关量输入输出隔离一般采用光电隔离器件就可以取得很好的隔离效果。
  4通讯口
  通讯口为装置与上位机联络的通道,是保证信息上传与上位机控制的关键,是实现无人值守的保证。一般工作现场装置与上位机都有一定的距离,为保证信息正确,硬件采用隔离防静电的标准接口(接口硬件协议RS-485/RS-422),通讯软件协议采用目前国内电力系统常用的标准站控协议,具有完备的校验措施及明确的信息格式。
  5中央控制器
  中央控制器是整个控制系统的核心,系统的所有功能都通过中央控制器及相关外围电路完成,一旦出现故障整个控制器将无法工作,其可靠性是保证系统可靠性的决定因素,为此采取了如下多项技术措施。
  (1)硬件看门狗技术:为防止CPU因外界强干扰的影响,造成程序跑飞导致系统死锁。系统中为CPU专门设计有硬件看门狗电路,当程序正常运行时,看门狗电路进行周期性复位,当出现程序跑飞而软件陷阱未能及时捕捉并处理而造成系统死锁,则看门狗电路无法得到复位信号,看门狗电路会产生 CPU硬件复位信号,使系统复位重新起动,恢复运行。
  (2)采用PSD、ISP器件:中央系统的基本构成是由CPU、地址锁存器、译码器、程序存储器、数据存储器等构成。常规硬件电路往往由多片TTL电路及EPROM、RAM构成,器件数量较多,增加了系统的故障点。而PSD器件将地址锁存器、译码器、程序存储器、数据存储器集成于一个芯片中,使器件数量成倍减少,增加了系统的可靠性。因直流操作电源控制相应输入输出通道较多,如采用常规TTL或其它常规接口器件(如8155、8255),则使器件数量增多,为此采用了大规模可编程逻辑器件(ISP),可大大降低器件数量,一片ISP(如ISP2064)可包含2000个门电路、64个寄存器。原用4片8D锁存器(74LS373)、4片8 位缓冲器完成32路输入、输出功能,现在只用一片ISP2064即可。另外ISP为可编程逻辑器件,也便于线路的修改、调试。
  (3)软件陷阱:当CPU因外界强干扰的影响,造成程序跑飞时,在程序区中各地址区域设有软件陷阱,当程序未按正常顺序执行,软件陷阱将错误程序指令捕捉并自动恢复正常运行。
  (4)重要数据多地址备份:程序运行出现错误时有可能使数据存储器误写,为防止程序重新起动运行时的错误,对于系统运行至关重要的数据均在数据存储器不同区域有多个数据备份,当程序运行时会自动比较各数据的同一性,如有错误可自动取出正确数据使用。
  (5)系统自恢复:对于操作电源控制器而言,其设备运行必须保证其连续性,要求当中央控制器非正常复位(如硬件看门狗动作、人为误操作、软件陷阱重新起动程序等)时,系统重新起动后应保持原有运行状态。针对这一要求在程序起动时通过判断数据存储器内特定的特征码,可判断是正常复位还是非正常复位,如为非正常复位可通过数据备份恢复系统运行,保证工作的连续性。
  (6)系统自诊断:对于中央控制器的关键器件,如程序存储器、数据存储器、CPU等,程序运行中均定时对其状态进行检查,可及时发现故障,并作出相应处理。
  以上所述各项提高可靠性的措施,已成功运用于我所MC-3型直流操作电源微机控制器中,均已在工业现场长期运行,取得了良好的效果
免费打赏
涛声依旧
2013年05月08日 13:13:08
2楼
LDO电源管理模块的分析及其在数字模拟射频系统中的应用
  随着便携式,单兵背负式设备在过去几十年的迅猛发展,如何能够在有限的板级空间内最大的集成各种电源输出并对其进行非常精确的控制管理便成了每一个硬件工程师不得不面对的一个问题。低压差,高效率,平稳的动态响应,稳定纯净的电压输出同时还要能够有效的抑制来自公共电网上非常“脏”的噪声影响等等这些一个比一个苛刻的指标要求,却是为一个优秀的完备的电子系统构成了稳定安全运行的能源供给平台。而以往业界的标准芯片如LM317和LM340再也无法满足我们日新月异的要求了,ADI公司推出的非常优秀好用的LDO稳压芯片,例如适合在数字领域的ADP170和ADP1706以及在模拟射频领域的ADP121和ADP130这几款片子便成为我们设计电源管理系统的重要选择。
  LDO由参考电压(band refence),误差放大器,反馈电阻分压网络,以及传输晶体管(pass transistor)这几大部分构成。具体结构框图如下图1所以。
  
  图一 采用低压差技术稳定输出电压的LDO框图
  输出电流I(L) 的大小由负载决定但通过传输晶体管(pass transistor)提供。传输晶体管的栅极(我们这里假定是PMOS管距离)电压大小由误差放大器(即error amplifier)的输出控制。来自电阻分压网络的反馈电压与由带隙基准参考源产生的标准参考电压作比较进而产生误差放大器的输入信号。如果分压网络的反馈电压大于参考源电压,由于这里的反馈电压接在放大器的反相端,那么此时的误差放大器输出则为一个负值,从而使得传输晶体管控制电压减小,用以调控更小的输出电流通过电阻分压器降低反馈电压,这个一个反馈环路的形成最终在误差放大器的输入端让反馈电压和参考源电压相等,将输出电压稳定在一个固定值。
  从电源管理系统的角度看负载,负载大小不一,相位不同。与此同时,这样的负载确是时变的,为了达到整个系统的低碳节能,智能化的动态的 “使能”负载是一种重要的手段。一个庞大的系统特别是便携式设备中(如图2所示),在同一时刻或者同一段时间内,并不是每一部分的电路都满负荷工作。因此,通过对各种不同负载在不能时间戳内的顺序“使能”是必要的,毕竟电池的能量是有限的。
  
  图2 便携式系统中的电源管理模块
  若是给一个数字系统(例如微处理器或者DSP)供给电能,这样的电源负载具有非常重要的一种特性即必须适应其快速变化的瞬时电流。我们大家都知道,无论是MCU还是DSP,并不是一直出于工作状态的。有时使能,进行全负荷的工作,有时即使被使能,也只是一部分电路处于工作状态,而剩余部分则为了节省能量休眠。针对为其供给能量的电源芯片来说,每一次的状态切换负载呈现出的阻抗无论是在虚部还是实部都有比较明显的不同,同时每一种状态之间的变化在时间上来说是非常迅速的,这种特性造就了负载的电流跳变是非常快的,提高了电源芯片对负载变化的瞬态响应要求。像ADP170和ADP1706这类数字线性稳压器设计用于支持系统的主要数字要求,通常是微处理器内核和系统输入/输出(I/O)电路。
  如何能够抗击噪声的干扰同时具有对较高电源纹波抑制一直是模拟系统设计需要注意的地方,对于电源管理系统来说,也不例外。大家都知道,公共电网里面的是很“脏”的,里面包含有非常多的噪声,何如能够有效的抑制来自上游电源杂波干扰,是一个电源管理系统(PMS)所要考虑的重要方面。同时自身不应该增添过多的噪声,从而对下游的供给负载造成不必要的影响。模拟稳压器噪声用电压有效值(rms)来衡量,当用于敏感电路时,应低于35 mV。PSRR反映LDO抑制电源线上的上游噪声的能力,应高于60 dB。超低噪声LDO ADP150具有9 mV的输出噪声和70 dB的PSRR,是为敏感模拟电路供电的理想电源器件。增加外部滤波器或旁路电容也可以减小噪声,但会增加成本和PCB尺寸。仔细和灵活的LDO内部设计也有助于降噪和电源噪声抑制。
  最后,我们在使用LDO片子的时候一定要注意相关的参数。例如如环境和结点温度范围、负载变化、瞬态信号的上升和下降时间以及带宽等等。
回复
涛声依旧
2013年05月08日 13:13:40
3楼
提高整流电路交流输电系统稳定性的方法
  一、输电系统运行的稳定性,是输电系统安全可靠运行的重要因数
  随着输电系统规模的扩大,输电距离和输送容量大大增大,系统的稳定问题就显得比较突出。可以说,输电系统稳定性是限制交流电流远距离输电送电距离和输送能力的决定因素。所以,必须采取各种措施来提高输电系统的稳定性,从而提高输送能力。从静态稳定分析可知,如果正确选择调节器的参数,使输电系统不发生自发振荡时,那么输电系统具有较高的功率极限,一般也就具有较高的运行稳定度。从暂态稳定分析可知,输电系统受大扰动后,发电机轴上出现的不平衡转矩将使发电机产生剧烈的相对运动;当发电机的相对角的振荡超过一定限度时,发电机便会失去同步,从而破坏了稳定性。从这些概念出发可以得出提高输电系统稳定性和输送能力的一般原则是:一是尽可能地提高输电系统的功率极限;即应从提高发电机的电势E、减小系统电抗x、提高和稳定系统电压U等方面着手。二是尽可能减小电机相对运行的振荡幅度;即应从提高暂态稳定,减小发电机转子轴上的不平衡功率、减小转子相对加速度以及减少转子相对动能变化量等方面着手。
  二、提高交流输电系统稳定性的措施
  彩用自动调节励磁装置:当发电机装设自动励磁调节器时,发电机可看做具有E′q为常数的功率特性,这也就相当于将发电机的电抗从同步电抗xd减小为暂态电抗x′d了。发电机的电抗在输电系统总电抗中所占的比重很大,因此,减小发电机的电抗可以提高系统的功率维持发电机端电压为常数,这就相当于将发电机的电抗减小为零。因此,发电机装设先进的调节器就相当于缩短了发电机与系统间的电气距离,从而提高了静态稳定性。自动励磁调节对改善暂态稳定也有明显作用,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,从而能使系统振荡迅速平息下来,缩短摇摆过程,这是十分有利的。此外,为改善暂态稳定性,现在的励磁系统都配备有某种强行励磁装置,其作用是在系统故障时,迅速增加发电机的励磁电压,减小了E′q的衰减程度,如果强行励磁倍数很高,甚至可以使暂态电势增大。
  改善电网结构及减小线路电抗:电网结构是输电系统安全稳定运行的基础,改善电网结构的方法较多;例如增加输电线路的回路数,减小线路电抗加强系统的联系;另外,当输电线路通过的地区原来就有输电系统时,将这些中间系统与输电线路连接成为较大的联合输电系统,这样可以使长距离的输电线路中间点的电压得到维持,相当于将输电线路分成两段,缩小了电气距离。而且,中间系统还可与输电线交换有功功率,起到互为备用的作用。在输电系统中间接入中间调相机,这些调相机配有先进的自动励磁调节器,则可以维持调相机端点电压甚至变压器高压母线电压恒定。
  快速切除短路和自动重合闸:快速切除故障是提高暂态稳定最根本,最有效的措施,同时又是简单易行的措施。快速切除故障的作用是减小加速面积,增大减速面积,提高了发电机之间并列运行的稳定性。另一方面,快速切除故障也可使负荷中的电动机端电压迅速回升,减少了电动机失速和停顿的危险,提高了负荷的稳定性。切除故障时间是继电保护装置动作时间和断路器动作时间的总和。目前可达到短路后0.06s切除故障线路,其中0.02s为保护装置动作时间,0.04s为断路器动作时间。高压输电线路的短路故障,绝大多数是瞬时性的,故障线路切除后通过自动重合闸装置立即重新投入,大多数情况下可以恢复正常运行,成功率可达90%以上。超高压输电线路的故障大多数是单相接地,这类故障可以采用按相动作的单相重合闸装置。这种装置自动选出故障相切除,经过一小段时间后又重新合闸。由于只切除一相,送电端的发电厂和受端系统没有完全失去联系,故提高了系统的暂态稳定性。
  系统解列与异步运行和再同步:合理采用各种提高稳定的措施之后,可以大大提高系统运行的稳定性,但不能保证破坏系统稳定的事故绝对不发生,因而可能出现未能预料的严重事故,使系统仍有可能失去稳定。为此,可以采取系统解列、异步运行和再同步等应急措施,以减少损失,尽快恢复对用户的正常供电。系统解列就是当系统稳定破坏已不可避免时,尽量限制事故扩大,减少稳定破坏造成的危害。把已经失去同步的输电系统,在适当的节点或解列点断开某些断路器,使系统分解为若干独立子系统,各自保持同步的部分。这样,各部分可以继续同步运行,保全系统的大部分。在事故消除后,经过调整,再把各部分并联起来,恢复系统正常运行方式。如果系统稳定的破坏不是由发电机本身的故障而引起的,可以考虑允许因稳定破坏而转入异步运行的汽轮发电机继续留在系统中工作, 并采取措施促使发电机恢复同步运行。但这种短期异步运行方式主要适用于有功功率,但要从系统中吸取无功功率,这样必将大大地改变系统中的无功功率的平衡关系,降低系统的电压水平。当个别汽轮发电机因励磁系统的故障而失磁时。只要故障不危及发电机组的继续运行,且系统中无功电源充足,可以不立即切除失磁的发电机,而让它在系统中短时间异步运行,待励磁系统故障消除后,重新投入励磁,使它恢复正常的同步运行。
  采用快速汽门控制与电气制动:在系统故障时,对于汽轮机采用快速的自动调速系统或者快速关闭进汽门的措施,就会显著减小过剩功率,提高系统的暂态稳定性。水轮机由于水锤现象不能快速关闭进水门,因此有时采用在故障时从送端发电厂中切掉一台发电机的方法,这等值于减少电动机功率。电气制动就是当输电系统中发生短路故障时,发电机输出的有功功率急剧减少,发电机组因功率过剩而加速,迅速投入制动电阻,消耗发电机的有功功率以制动发电机,使发电机不失步。另外变压器中性点经小电阻接地的作用为接地短路时的电气制动,使系统发生不对称接地短路时,产生的零序电流分量通过接在变压器中性点的接地电阻将产生有功功率,同时减少了发电机转子的不平衡功率,提高输电系统暂态稳定性。
回复
shuping_0310
2013年08月27日 12:00:06
4楼
受教了,相关方面的知识正在收集中
回复
梦就在
2014年03月03日 09:56:04
5楼
路过,看看学习学习
回复
cjxxsld
2014年09月25日 10:28:41
6楼
学习了,谢谢楼主。
回复
qianbochenhong
2014年10月20日 15:56:13
7楼
路过,看看学习学习
回复
szg169
2014年10月21日 00:49:23
8楼
非常感謝楼主分享!!
回复
zhangsd2015
2014年11月26日 21:35:39
9楼
受教了,谢谢楼主分享
回复
sydzzlb2014
2014年11月27日 15:23:16
10楼
很实用的资料,学习了,谢谢
回复
stariver0
2015年01月12日 20:11:34
11楼
很实用的资料,学习了,谢谢
回复

相关推荐

前往土木在线阅读全文
阅读体验更佳
前往
继续
APP内打开