工业废水进入城镇污水厂怎样进行预处理?
peakye
peakye Lv.12
2006年06月29日 22:30:10
只看楼主

本人正在作一个城镇污水处理厂预处理改造方案.由于收集范围内的进水水质由原来的COD450变成现在的700-1000,进入的是大量的工业园区没有达标排放的工业污水,其中有造纸,有高分子添加剂,有精细化工(如聚乙烯等).本人想听取一下版内水友们的意见.最好能提供一些工程实例,一些论文资料,甚至工程设计资料和图片.本人十分感谢.(以微薄的积分相赠,不够的话,版主会补贴的哦!?)该工程后续工艺为CAST工艺,4万吨每天,分成两组,前端选择区已经考虑了部分水解功能,停留时间大概已经为4小时了.而且目前预留下来的预处理地方也比较小.这个选择工艺也带来了一定的限制.

本人正在作一个城镇污水处理厂预处理改造方案.由于收集范围内的进水水质由原来的COD450变成现在的700-1000,进入的是大量的工业园区没有达标排放的工业污水,其中有造纸,有高分子添加剂,有精细化工(如聚乙烯等).本人想听取一下版内水友们的意见.
最好能提供一些工程实例,一些论文资料,甚至工程设计资料和图片.本人十分感谢.(以微薄的积分相赠,不够的话,版主会补贴的哦!?)

该工程后续工艺为CAST工艺,4万吨每天,分成两组,前端选择区已经考虑了部分水解功能,停留时间大概已经为4小时了.而且目前预留下来的预处理地方也比较小.这个选择工艺也带来了一定的限制.

看来这个问题探讨还是放到市政给排水比较适合,涉及的问题也是城市污水处理厂如何应付工业废水的排入。希望能得到大家更广泛的讨论!
免费打赏
peakye
2006年07月04日 21:58:36
32楼

违背基本原理的争论,好像有点过分。至少我们单位和参照的省级院做的工程运行的很好。水解的书的确看了很多,自己收藏了也近十本。但是不知道楼上要看什么基本原理。我可以载入给你看。
回复
peakye
2006年07月04日 22:08:23
33楼
一、基本原理
污水生物处理工艺分好氧工艺和厌氧工艺,这两类工艺各有其优缺点。随着生物处理技术的发展,作为生物处理的主角仍是微生物。如何能使好氧生物处理工艺提高污泥浓度,减少氧的消耗‘如何使厌氧生物处理工艺缩短处理时间和提高处理负荷,是值得进一步研究的课题。各种类型有机污染物的厌氧(缺氧)、好氧降解反应过程汇总如下。
好氧(微需氧)过程 厌氧(缺氧)过程
(1)COD→H2O+CO2 (2)COD→CH4+CO2
传统好氧工艺 传统厌氧工艺
(3)NH4+→NO3- (4)NO3-→N2
硝化工艺 反硝化或缺氧工艺
(5)H2S→S0 (6)SO42-→H2S
微需氧或好氧工艺 厌氧反应
(7)R-Cl→CO2+Cl- (8)R3CCl→CH4+CO2+Cl-
好氧反应 厌氧反应
从化学反应式(1)-(8)来看,除反应式(1)、(2)为传统的好氧和厌氧工艺外,其他均为兼性菌的反应。人们过去对于好氧微生物和专性厌氧微生物研究十分充分,而对兼氧性微生物的研究不够。
事实上,利用兼性细菌的工艺人们已开始有所涉及。如,对去除N、P的A2O或AO工艺(反应式(3)、(4)),是利用了兼性菌在好氧条件下进行好氧代谢,而在厌氧条件下进行不同代谢反应的工艺。在含有硫酸盐的有机废水中,厌氧反应将有机物和硫酸盐分别转化为有机酸和硫化氢(反应式(6)),产生的硫化氢被微需氧细菌直接氧化为硫元素。这可以用来去除硫化物并回收硫元素(反应式(5))。最新研究表明,一些在好氧状态下难降解芳香族和卤代烃在厌氧条件下容易分解(反应式(7)、(8))。
以上反应是一些新工艺的化学反应基础,其基本原理是新工艺开发的基础和生长点。例如,目前国际和国内上流行的AB工艺和序批式活性污泥(SBR)工艺。前者是在A段的高吸附段发生了水解和部分酸化反应,大分子物质降解为小分子物质,所以使得整个工艺的效率大为提高。对于后者而言,在SBR的反应过程同样经历了好氧-缺氧和厌氧的过程。
成功地利用兼性微生物的典型工艺是由北京市环境保护研究院在20世纪80年代开发的水解-好氧生物处理工艺。水解池利用水解和产酸微生物,将污水中的固体、大分子和不易生物降解的有机物降解为易于生物降解的小分子有机物,使得污水在后续的好氧单元以较少的能耗和较短的停留时间下得到处理。采用水解-活性污泥法与传统的活性污泥相比,其基建投资、能耗和运行费用可分别节省30%左右。由于水解池具有改善污水可生化性的特点,使得本工艺不仅适用于易于生物降解的城市污水等,同时更加适用于处理不易生物降解的某些工业废水,如纺织废水,印染废水,焦化废水,酿酒废水,化工废水,造纸废水等。
回复
peakye
2006年07月04日 22:11:24
34楼
新工艺有两个最为显著的特点:其一,水解池取代了传统的初沉池,水解池对有机物的去除率远远高于传统的初沉池,更为重要的是经过水解处理,污水中的有机物不但在数量上发生了很大变化,而且在理化性质上发生了更大变化,使污水更适宜后继的好氧处理,可以用较少的气量在较短的停留时间内完成净化;其二,这种工艺在处理污水的同时,完成了对污泥的处理,使污水、污泥处理一元化,可以从传统的工艺过程种取消消化池。作为一种替代的处理工艺,在总的停留时间和能耗等方面比传统的活性污泥要有很大的优势。
从原理上讲,水解(酸化)是厌氧消化过程的第一、二两个阶段。但水解(酸化)-好氧处理工艺中的水解(酸化)段和厌氧消化的目标不同,因此是两种不同的处理方法。
水解(酸化)-好氧处理系统中的水解(酸化)段的目的,对于城市污水是将原水中的非溶解态有机物截留并逐步转变为溶解态有机物;对于工业废水处理,主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。水解工艺的开发过程是从低浓度城市污水开始的,与高浓度废水的厌氧消化中的水解、酸化过程是不同的。在连续厌氧过程中水解、酸化的目的是为混合厌氧消化过程中的甲烷化阶段提供基质。而两相厌氧消化中的产酸段(产酸相)是将混合厌氧消化中的产酸段和产甲烷段分开,以便形成各自的最佳环境。因此,尽管水解(酸化)-好氧处理工艺中的水解(酸化)段、两相法厌氧发酵工艺中的产酸相和混合厌氧消化工艺中的产酸过程均产生有机酸,但是由于三者的处理目的的不同,各自的运行环境和条件有着明显的差异,主要表现在以下几个方面。
(1)氧化还原电位(Eh)不同
在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一个反应器中,整个反应器的氧化还原电位(Eh)的控制必须首先满足对Eh要求严格的甲烷菌,一般为300mV以下,因此,系统中的水解(酸化)微生物也是在这一电位值下工作的。而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在-300—-100mV之间。水解(酸化)-好氧处理工艺中的水解(酸化)段为一典型的兼性过程,只要Eh控制在0mV左右,该过程即可孙里进行。
(2)pH值不同
在厌氧消化系统中,消化液的pH值控制在甲烷菌生长的最佳pH值范围,一般为6.8-7.2。在两相厌氧消化系统中,产酸相的pH值一般控制在6.0-6.5之间,在酸化反应器pH值降低时,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌将产生强烈的抑制作用。对于水解(酸化)-好氧处理系统来说,由于浓度低不存在酸的抑制问题,因此,可以不控制pH值的范围,一般pH在6.5-7.5之间。
(3)温度不同
三种工艺对温度的控制也不同,通常厌氧消化系统以及两相厌氧消化系统的温度均严格控制,要么中温消化(30-35℃),要么高温消化(50-55℃)。而水解处理工艺对温度无特殊要求,通常在常温下运行,也可获得较为满意的水解(酸化效果)。
由于反应条件不同,三种工艺系统种优势菌群也不相同。在厌氧消化系统种,由于严格地控制在厌氧条件下,系统中的优势菌群为专性厌氧菌,因此完成水解(酸化)的微生物主要为厌氧微生物。水解(酸化)工艺控制在兼性条件下,系统中的优势菌群也是厌氧微生物,但以兼性微生物为主,完成水解(酸化)过程的微生物相应也主要为厌氧(兼性)菌。对于两相厌氧消化系统中的产酸相,微生物的优势菌群随控制的氧化还原电位不同而变化。当控制的电位较低时,完成水解、产酸的微生物主要为厌氧菌;当控制的电位较高时,则完成水解、产酸的微生物主要为兼性菌。
需要说明的是,水解-好氧工艺中的水解(酸化)过程与好氧AO(HO)、A2O和AB等工艺A段中发生的水解过程也是有较大区别的。这表现在以下两个方面:首先是菌中不同,如上所述在水解工艺中的优势菌群是厌氧微生物,以兼性微生物为主,而在好氧AO(HO)、A2O和AB等工艺A段中的优势菌是以好氧菌为主,仅仅部分兼性菌参加反应;其次,在反应器内的污泥浓度不同,水解工艺采用的是升流式反应器,其中污泥浓度可以达到15-25g/L,而好氧AO(HO)、A2O和AB等工艺中从二沉池回流的污泥浓度一般最高为5g/L,并且以好氧菌为主。以上的差别造成了水解工艺是完全水解,而好氧AO(HO)、A2O和AB等工艺中A段仅仅发生部分水解。
微生物种群的差异使得三种工艺系统的最终产物也完全不同。在厌氧消化系统中,水解(酸化)产生的有机酸被立即转化为甲烷和二氧化碳(沼气)。水解(酸化)工艺中的最终产物为低浓度有机酸,个别情况下还有极少量的甲烷。而两相厌氧消化中的产酸相的产物主要为高浓度有机酸(主要为乙酸)、少量甲烷和二氧化碳
回复
peakye
2006年07月04日 22:11:51
35楼
水解工艺的研究工作是从污水的厌氧-好氧生物处理小试验开始,经过反复实验和理论分析,逐步发展为水解(酸化)-好氧生物处理工艺。在水解反应器中实际上完成水解和酸化两个过程(酸化也可能不十分彻底),但为了简化称呼,简称为水解。如上一章所述厌氧发酵产生沼气过程可分为水解阶段、酸化阶段、乙酸化阶段和甲烷阶段等四个阶段。水解池是把反应控制在第二阶段完成之前,不进入第三阶段。采用水解池较之全过程的厌氧池(消化池)具有以下的优点。
(1) 水解、产酸阶段的产物主要为小分子有机物,可生物降解性一般较好。故水解池可以改变原污水的可生化性,从而减少反应的时间和处理的能耗。
(2) 对固体有机物的降解可减少污泥量,其功能与消化池一样。工艺仅产生很少的难厌氧降解的生物活性污泥,故实现污水、污泥一次性处理,不需要经常加热的中温消化池。
(3) 不需要密闭的池,不需要搅拌器,不需要水、气、固三相分离器,降低了造价和便于维护。由于这些特点,可以设计出适应大、中、小型污水处理厂所需的构筑物。
(4) 反应控制在第二阶段完成之前,出水无厌氧发酵的不良气味,改善处理厂的环境。
(5) 第一、第二阶段反应迅速,故水解池体积小,与初次沉淀池相当,节省基建投资。
因此,水解-好氧生物处理工艺是有自己特点的一种新型的水处理工艺。
回复
peakye
2006年07月04日 22:19:25
36楼
一、有机物形态对水解去除率的影响
污水中的污染物按分散划分为悬浮状、超胶体、胶体和溶解性4种不同形态。根据工程上采用的简单分离方法来划分,定义为溶解性、胶体、超胶体和可沉的COD。例如:溶解性COD为通过0.45um滤膜的组分;胶体COD为通过4.4um滤纸的过滤液与溶解性COD之差;超胶体COD为通过4.4um-100um之间的组分;可沉的COD为粒径>100um、通过4h沉淀可以去除的组分。根据以上分类,水解反应器的运行效果反应前后的污水特性见图2-9。

从图种实验数据可知,城市污水进水中可沉COD和超胶体COD占总COD的50%左右,经水解处理后基本上去除了可沉性COD和超胶体COD的60%。由此可见,水解池对悬浮性物质的去除能力很强,所以水解工艺适合污水中含悬浮状COD比例较高的废水。经水解反应后,出水溶解性COD比例从30%提高到占出水的47%。在运转中经常有水解池出水溶解性COD、BOD值高于进水的情况,这说明反应中确有相当数量的不溶性有机物溶解于水中,这通过污泥产量的计量可以得到进一步证实,在10-20℃条件下去除悬浮物有48%发生水解。
二、有机物降解途径

以COD为例,图2-10给出了对可沉性、超胶体、胶体性和溶解性等不同物理状态的有机污染物迁移转化途径的图示。首先水解反应器中的大量微生物将进水中颗粒物质和胶体物质迅速截留和吸附,这是一个物理过程的快速反应,一般只要几秒到几十秒即可完成,因此,反应是迅速的。截留下来的物质吸附在水解污泥的表面,漫漫地被分解代谢,其在系统内的污泥停留时间要大于水力停留时间。在大量水解细菌的作用下将大分子、难于生物降解物质转化为易于生物降解的小分子物质后,重新释放到液体中,在较高的水力负荷下随水流移出系统。由于水解和产酸菌世代期较短,往往以分和小时计,因此,这一降解过程也是迅速的。在这一过程中溶解性BOD、COD的去除率虽然表面上讲只有10%左右,但是由于颗粒有机物发生水解增加了系统中溶解性有机物的浓度,因此,溶解性BOD、COD去除率远远大于10%。但是由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观,故以气体形成释放的甲烷量很少。可以看出,水解反应器集沉淀、吸附、网捕和生物絮凝等物理化学过程以及水解、酸化和甲烷化过程等生物降解功能于一体。这些过程在水解反应器中得到了强化,这与功能单一的初沉池有本质的区别。
一、有机物形态对水解去除率的影响
污水中的污染物按分散划分为悬浮状、超胶体、胶体和溶解性4种不同形态。根据工程上采用的简单分离方法来划分,定义为溶解性、胶体、超胶体和可沉的COD。例如:溶解性COD为通过0.45um滤膜的组分;胶体COD为通过4.4um滤纸的过滤液与溶解性COD之差;超胶体COD为通过4.4um-100um之间的组分;可沉的COD为粒径>100um、通过4h沉淀可以去除的组分。根据以上分类,水解反应器的运行效果反应前后的污水特性见图2-9。

从图种实验数据可知,城市污水进水中可沉COD和超胶体COD占总COD的50%左右,经水解处理后基本上去除了可沉性COD和超胶体COD的60%。由此可见,水解池对悬浮性物质的去除能力很强,所以水解工艺适合污水中含悬浮状COD比例较高的废水。经水解反应后,出水溶解性COD比例从30%提高到占出水的47%。在运转中经常有水解池出水溶解性COD、BOD值高于进水的情况,这说明反应中确有相当数量的不溶性有机物溶解于水中,这通过污泥产量的计量可以得到进一步证实,在10-20℃条件下去除悬浮物有48%发生水解。
二、有机物降解途径

以COD为例,图2-10给出了对可沉性、超胶体、胶体性和溶解性等不同物理状态的有机污染物迁移转化途径的图示。首先水解反应器中的大量微生物将进水中颗粒物质和胶体物质迅速截留和吸附,这是一个物理过程的快速反应,一般只要几秒到几十秒即可完成,因此,反应是迅速的。截留下来的物质吸附在水解污泥的表面,漫漫地被分解代谢,其在系统内的污泥停留时间要大于水力停留时间。在大量水解细菌的作用下将大分子、难于生物降解物质转化为易于生物降解的小分子物质后,重新释放到液体中,在较高的水力负荷下随水流移出系统。由于水解和产酸菌世代期较短,往往以分和小时计,因此,这一降解过程也是迅速的。在这一过程中溶解性BOD、COD的去除率虽然表面上讲只有10%左右,但是由于颗粒有机物发生水解增加了系统中溶解性有机物的浓度,因此,溶解性BOD、COD去除率远远大于10%。但是由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观,故以气体形成释放的甲烷量很少。可以看出,水解反应器集沉淀、吸附、网捕和生物絮凝等物理化学过程以及水解、酸化和甲烷化过程等生物降解功能于一体。这些过程在水解反应器中得到了强化,这与功能单一的初沉池有本质的区别。
三、水解池动态特性分析
1、上升流速与系统内污泥浓度的关系
研究上升流速和污泥层高度(实际上是污泥浓度)之间的变化规律,可以忽略由于污泥积累造成的污泥区高度的变化。不断调整进水量,改变上升流速vi,在一个特定的上升流速下,测定稳定后相对应的污泥层高度(一般为改变负荷1h以后),并通过整个系统内污泥总量,换算出相对应的污泥层高度内平均浓度X,则可以得出图2-11所示结果。

图2-11中v0为无量纲化上升流速,v0=vi/vmax,vmax为密云县城市污水处理厂设计最大上升流速,m/h;X为平均污泥浓度,g/L。
从图2-11可见,在稳定状态下一个上升流速对应于一个平均污泥浓度X。这种对应关系是由于在水解池内污泥在垂直方向的运动是污泥颗粒的平均浓度vr和水流的上升流速vi在稳定状态达到平衡时形成,即vr=vi。而污泥的沉淀速度与污泥浓度可用Dick理论公式描述:
vr=αX-n=9.53X-0.75
因此,通过图2-11中数据可以得到应用于城市污水水解池中的关系式:
v0=vi/vmax=α’X-n=5.29X-0.75
应用上述关系,在实际运行的密云县城市污水处理厂的平均流量、最大流量和最小流量下所对应的污泥浓度分别约为40g/L,20g/L和60g/L。从以上数据可以看出,在最大流量条件下,污泥层由于膨胀而造成污泥浓度降低,同时引起污泥成层的沉淀速度提高,自动保持反应器内污泥浓度(约20g/L);而随着流量的减少,在最小流量时污泥浓度增加,沉速降低也达到动态平衡,这时污泥浓度为60g/L。这一特征可以在运转管理中得到运用,来制定不同的排泥措施,以减少污泥处理的投资和运转费用。
2、稳定性分析
水解反应器属上流式污泥床反应器范畴,具有两个基本功能:即生物反应和沉淀功能。图2-12给出了这两者在水解反应器中的相互约速关系。在水解酸化反应中所需微生物的浓度与水力停留时间呈反向变化(反应曲线)。从理论上讲,在给定的污泥龄下(θc一定),状态的稳定点一定在反应曲线之上。只要微生物量足够多,则反应不受停留时间的控制,这在工程上是十分有利的。考虑到系统运行的经济性,停留时间越短越好,这要求运行点A、B、C沿反应曲线向左上移动。随着停留时间的限制,即受污水上升流速的制约。
沉降曲线给出了这种限制关系,其将平面分为两部分,右半平面为稳定状态,左平面是不稳定状态。有两种情况会造成污泥界面上升;第一种情况,长期不排泥,这时污泥面将不断上升,这是由于污泥量增加使得污泥浓度增加,这时可通过排泥重新回到稳定状态;第二种情况,当水力停留时间缩短,水的上升流速增大造成污泥界面上升,这可通过排泥来降低系统中的污泥量,使污泥浓度与停留时间达到一个新的稳定状态。图2-12所示是设计与运行管理中的一个重要关系,其反映了生物反应与沉淀作用这对矛盾的统一关系。由此可以得出结论,对于低浓度城市污水厌氧处理过程,水力停留时间和水力负荷是较有机负荷更为本质和更有效的运行、设计参数。
回复
tjcep2
2006年07月07日 16:17:05
37楼
水解2。7小时,枝型布水,美国ERM公司给做的(不是崇洋),人家确实考虑的比较细致
有可行性
回复
zpyjhx
2006年07月07日 16:54:26
38楼
增加物化处理,延长缺氧厌氧的停留时间
回复
peakye
2006年07月08日 16:14:42
39楼
这个问题是现在污水厂普遍会遇到的问题,也是老厂改造的一个趋势。大家加入探讨一下a !
回复
tjcep2
2006年07月10日 17:44:27
40楼
美国ERM公司对该项目增加水解酸化池的可行性进行的分析如下:
比选方案4-对拟建XX污水处理厂的概念设计进行修改,同时对现有重点企业的设施进行改进。
(1)修改拟建XX污水处理厂的概念设计
1.方案内容
该方案是在原可研的污水处理厂旁边建立一个水解酸化池。该水解酸化池接收旋流沉砂池的出水,经水解处理后,水解酸化池的出水直接进入原计划的氧化沟厌氧选择段,运行方式为:
当污水的污染物浓度持续或者间歇地(每个星期都有)高于污水处理厂的设计值,或者污水中持续或间歇地(每个星期都有)含有较高浓度的难降解有机化合物时,该水解酸化池作为整个污水处理厂的一个处理单元连续工作。
当污水的水质长期稳定地(连续3个月以上)符合原可研的污水处理厂的实际条件时,旋流沉砂池的出水超越水解酸化池,直接进入原计划的氧化沟厌氧选择段,此时水解酸化池可以停止工作,但是每3个月水解酸化池都应工作一段时间。
回复
tjcep2
2006年07月10日 17:54:14
41楼
2.水解酸化池概念设计
A.水解酸化池的参数如下:
设计平均流量:100000立方米/天
平均水力停留时间:HRT=2.7h
有效水深:H=4.0m
水池总池深:Ht=4.5m
水流上升流速:v=1.5m/h
有效体积:V=14000立方米,分成八组,服务于两组50000立方米/天的氧化沟处理工艺
水池中的配水方式:小阻力分枝配水
水池中的出水收集:平行的数组三角出水堰
水池排泥:设泥面监测仪,保持泥面在水下1.0m,排泥点位于池底上1.6m处,每天1-2次多点重力排泥。
B.水池平面净尺寸:
池长L=50m
池宽B=72m ,共分8组,每组单宽9m
C.水解酸化池的预计污染物去除率:
COD cr=20-40%
BOD5=15-25%
SS=20-40%
回复

相关推荐

APP内打开