等电位联结浅释一、 总等电位联结比接地更有效地降低接触电压 过去的老概念是凡电气装置都要打人工接地极,将设备的金属外壳接地或重复接地,这样人身就安全了,现在这一概念是多少已经过时了。按等电位理论,接地不过是以地电位作参考电位的一种等电位联结,但在许多情况下它并非等电位联结的最好形式,也即它并不能最大限度地防范人身电击事故。 这可用图1来说明,在图1(a)中,电源处作有系统接地,其接地电阻为RB,但建筑物内电气设备未作保护接地,即未与地作等电位联结。如图所示,当设备绝缘损坏时,其外壳将对地带220V的UO相电压,此电压即人体的接触电压UC,人体触及该外壳时电击致死的危险很大。在图1(b)中设备外壳经保护线(PE线)接地,即与地作了等电位联结,其接地电阻为RA,如发生上述接地故障,将有一接地故障电流Id经RA、RB返回电源,设备外壳对地电压也即人体接触电压UC′将自220V降为Id(RA+ZPE),Id还能使线路上的保护电器切断电源。对比图1(a),电击致死的危险大大减少。如果按图1(c)所示在建筑物中作总等电位联结,即在电源进线处将PE母排(它与建筑物内所有电气设备的金属外壳相连通)通过其旁的接地母排与建筑物内的各种金属管道、结构相联结(详见上述国标安装图册97SD567),使这些金属部分都处在相同或接近的电位水平上,如图1(c)中点划线所示,它被称为总等电位联结。这时如设备发生故障,因人体处于等电位面上,接触电压仅为UC″=Id.ZPE,与图1(b)相比,接地电阻RA以若干欧计,而ZPE以若干毫欧计,显然UC″大大小于 UC′。这说明作总等电位联结的防电击效果远远优于通常的接地。
一、 总等电位联结比接地更有效地降低接触电压
过去的老概念是凡电气装置都要打人工接地极,将设备的金属外壳接地或重复接地,这样人身就安全了,现在这一概念是多少已经过时了。按等电位理论,接地不过是以地电位作参考电位的一种等电位联结,但在许多情况下它并非等电位联结的最好形式,也即它并不能最大限度地防范人身电击事故。
这可用图1来说明,在图1(a)中,电源处作有系统接地,其接地电阻为RB,但建筑物内电气设备未作保护接地,即未与地作等电位联结。如图所示,当设备绝缘损坏时,其外壳将对地带220V的UO相电压,此电压即人体的接触电压UC,人体触及该外壳时电击致死的危险很大。在图1(b)中设备外壳经保护线(PE线)接地,即与地作了等电位联结,其接地电阻为RA,如发生上述接地故障,将有一接地故障电流Id经RA、RB返回电源,设备外壳对地电压也即人体接触电压UC′将自220V降为Id(RA+ZPE),Id还能使线路上的保护电器切断电源。对比图1(a),电击致死的危险大大减少。如果按图1(c)所示在建筑物中作总等电位联结,即在电源进线处将PE母排(它与建筑物内所有电气设备的金属外壳相连通)通过其旁的接地母排与建筑物内的各种金属管道、结构相联结(详见上述国标安装图册97SD567),使这些金属部分都处在相同或接近的电位水平上,如图1(c)中点划线所示,它被称为总等电位联结。这时如设备发生故障,因人体处于等电位面上,接触电压仅为UC″=Id.ZPE,与图1(b)相比,接地电阻RA以若干欧计,而ZPE以若干毫欧计,显然UC″大大小于 UC′。这说明作总等电位联结的防电击效果远远优于通常的接地。
需要说明在作总等电位联结后图1(c)中的RA接地极除特殊情况外,实际上是不需要花费人力物力去做的。因为总等电位联结中所联结的地下钢筋和金属管道本身就是很好的自然接地极。由于其与地的接触面积大,接地电阻很小(一般约为1Ω左右),又因混凝的包裹而不受土壤的腐蚀,寿命也极长,所以做总等电位联结后一般没有必要打人工接地极,同时也可省却对人工接地极的许多维护管理工作。
二、 总等电位联结可消除TN系统沿线路传导故障电压引起的电击事故
总等电位联结另一个重要作用是它可清除常用的TN系统内沿PEN线和PE线传导的故障电压引起的电气事故。图2所示为某TN-C-S系统,它所供电的电气设备有在建筑物内的,也有在建筑外的。如果电源线路的相线发生接大地故障,例如相线坠入水中或和与大地连接良好的金属构架相接触,则其接地故障电流Id将经故障点接地电阻RE和电源处系统接地的接地电阻RB返回电源。因受此两接地电阻的限制,Id值一般不过一、二十安。为避免大面积停电,发生这种故障时电源端是不跳闸的。如图所示这时电源中性点电位升高Uf=Id.RB,此Uf常超过接触电压限值50V,它沿PEN线和PE线在全TN系统内传导。图2中的户外设备外壳因接PE线而带Uf电压,而设备所在位置的地面电位则为零伏,当Uf大于50V时易引起电击事故。即使在设备处打接地极作重复接地也常无济于事,因接地极通过故障电流时总会产生电压降而带对地电位。现在不时发生大街上路灯、广告灯电击伤人事故,其起因常在于此。
但在同样的故障情况下,作有总等电位联结的建筑物内却不会发生这类伤人事故。这是因为建筑物内的PEN线、PE线、设备外壳和建筑物的地下钢筋、金属管道等都通过总等电位联结而处在同一电位上(此电位可高于地电位),建筑物内不会出现电位差,如图2所示,自然无由发生电击事故。总等电位联结能消除TN系统沿PEN线、PE线传导来的故障电压(也包括沿其他金属管道传导来的故障电压)引起的电击事故,所以它对TN系统电气装置尤为重要。
顺便说明,在一些旧建筑物内虽然未作人为的总等电位联结,但由于电线钢管、其他金属管道、结构等之间的自然接触导通,也具有一定的等电位联结作用,起到一定程度的防电击的效果。
还需说明,为避免上述TN系统户外设备的电击事故,这等设备不应再接TN系统的PE线,而应另打单独的接地极、另引PE线给户外设备接地,它被称作局部TT系统。这时必须为户外设备装用漏电保护器以便在设备本身发生接地故障时及时切断电源。
三、 局部等电位联结的应用
如上述,总等电位联结是在建筑物的电源进线处进行一次等电位联结,将整个建筑物形成一个电位相等或接近的准法拉第笼。当发生接地故障时,人体接触电压减少至建筑物内PE线上故障电流所引起的电压降,如果建筑物很大或很高,PE线很长,如图3所示,则PE线的阻抗随之增大,非但故障时接触电压大大超过接触电压限值50V,在TN系统内由于故障电流的减小,线路首端的过流保护电器(断路器、熔断器)的切断电源时间也将超过规定值(手提式和移动式设备为0.4S),人体电击危险很大。对TN系统而言,一个防范措施是在这些回路上装设漏电保护器以提高保护灵敏度,但这将增加线路投资和维护管理的工作量。更简单经济的有效措施是在该局部范围内再重复做一次等电位