该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全国最大的冰蓄冷工程项目。该项目由********施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层; 机房建筑面积1200m2(蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。关键字:建筑节能 冰蓄冷 一、工程概述
关键字:建筑节能 冰蓄冷
一、工程概述
该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全国最大的冰蓄冷工程项目。该项目由**********施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑面积1200m2(蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。
二、设备配置
(一)冷源
1.双工况螺杆式冷水机组3台(YSFAFAS55CNES)约克(合资) 2.基载离心式冷水机组2台(YKFBEBH55CPE)约克(合资)
(二)冷却塔:大连斯频得
冷却塔共计5台,CTA-600UFWS两台,CTA-450UFWS三台。
(三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16。
(四)蓄冰槽(现场加工)
蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT)。(见表1)
(五)乙二醇循环水泵:德国KSB
乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。
(六)冷却水循环泵:德国KSB
冷却水循环泵选用卧式离心泵4台,其中1台备用。
三、运行策略:
(一)负荷说明
根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为11428KW(3250RT)。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100%负荷情况逐时空调负荷:(见表2)
蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。
根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负荷:11428KW(3250RT)
设计日冷负荷:151705KWH(43144RTH)
最大小时基载冷负荷:2286KW(650RT)
扣除基载冷负荷后的最大小时冷负荷:9142.33KW(2600RT)
扣除设计日基载冷负荷后冷负荷:96852.4KWH(27544RTH)
(二)系统流程简述
本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW(1126RT),用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9,根据冷负荷变化,通过电动调节阀CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷冻水回路采用的是二级泵系统,节省运行费用。
本工程最大蓄冰容量31787.2KW(9040RT),分6个冰槽,槽内净高2.35米。为了尽量减少冰槽的占地面积,我们将蓄冰槽作成非标准型的,尽量利用建筑空间,顶板上方预留设备入口兼检查孔,供设备及检修人员出入。冰槽结构为外保温。自蓄冰槽向外的结构组成分为:防水涂刷层,橡塑保冷层。为满足电力部门削峰填谷的需求,电力高峰段,双工况冷水机组,基载冷水机组满负荷运行,不足冷量由融冰输出供给。系统设计中同时考虑备用,当任意一台机组发生故障时,开启备用基载冷水机组满足空调供冷的需求。当任意一台双工况冷水机组发生故障时,开启备用基载冷水机组,满足第二天空调供冷的需求,当任意一个分区的蓄冰槽发生故障时,开启备用基载冷水机组,满足空调供冷的需求。
在过渡季节空调供冷时,停开冷水机组,仅输出融冰供冷便可满足空调需求。此时,电动调节阀CV1,电动阀CV3关闭,开启电动阀CV2,CV4,乙二醇溶液冰不流经双工况冷水机组,避免了泵功率的浪费。在蓄冷槽单独供冷时,乙二醇溶液泵采用变频技术,大量降低水泵能耗。
(三)蓄冰运行策略
根据全日冷负荷曲线及北京地区的分时电价情况,本设计采用的是负荷均衡的部分蓄冰策略,这样既可以用在夜间储存的冷量最大限度的满足在电力高峰期空调冷负荷需要,节约系统运行成本,也尽可能少的占用该建筑的有效面积。
四、运行情况比较:
由于北京地区电网采用了峰谷电价政策,高峰电价与低谷电价已达到4.3∶1。因此,采用冰蓄冷系统,可以大大降低空调系统运行费用。现阶段,峰谷分时电价如下表:
乙二醇系统的控制根据电力负荷的峰谷时段(电价的高低)和空调负荷的要求,整个蓄冰制冷系统能自动切换系统的运行工况:
(1)双工况主机制冰模式
(2)双工况主机+融冰供冷模式(满负荷情况)
(3)融冰单供冷模式(部分负荷情况)。控制系统根据工况要求,自动开关电动阀,组成某工况所需的流体通道。通过阀门调节控制融冰速度;在融冰单供冷工况通过乙二醇泵变频及台数调节控制融冰速度及供水温度。
1.双工况主机制冰模式:23∶00~7∶00
在此时段内为电力低谷期,电价低廉。双工况主机设定为制冰工况并满负荷运行,所制得的冷量全部以冰形式存储起来,以供冷负荷高峰期使用。开启双工况主机和乙二醇泵,在双工况主机、乙二醇泵和储冰槽之间形成一个制冰循环。在电力低谷期,充分利用低谷廉价电力,三台双工况主机全力制冰,制冷机组首先使回路显热降温,直降到蓄冷球相变温度,达到相变温度后,随着吸收机组产生的冷量,蓄冷球开始发生相变(结冰),在结冰期间冰球不断吸取机组所产的冷量,至制冷机组产生的冷冻流体温度也略降至相变结束时对应的最终温度速度很快,而这种快速的降温表明了蓄冷阶段的结束。因为制冰时主机的效率受到室外空气参数系统设定的,达到设计蓄冰量所需要的时间可能超过或短于电力低谷时段,如果超过电力低谷时段,系统会在早晨电力平峰期甚至电力高峰期制冰,系统的运行费用增加;如果短于电力低谷期,则会造成系统在达到设计蓄冰量以后无效或低效运行(主机出口温度很低),系统的运行费用也会增加。所以应该在电力低谷期,充分用足制冷机组制冰量和冰球的蓄冰能力,才能最大发挥蓄冰的功效(即最的效果)。判断制冰结束的条件是:
①控制系统的时间程序指使为非储冰时间。
②当制冰主机出口温度低于-7℃(可调)时或储冰装置的进出温差降到1.5℃(可调)。
2.双工况主机+融冰供冷模式(满负荷情况):8∶00~23∶00
当用户冷负荷大于制冷机组所产生的冷量时,需要蓄冷槽与制冷机组同时供冷,即联供运行。在此时段双工况主机满负荷运行,不足冷量由融冰满足,融冰供冷量根据负荷变化由电动调节阀CV1、CV2来调节。开启双工况主机,乙二醇泵和冷冻水泵。在双工况主机、乙二醇泵和板换形成一个供冷循环。乙二醇泵把主机的冷量输送到板换,冷冻水和乙二醇溶液在板换进行热交换后,有冷冻水泵输送到分水器或空调末端。除了由于检修原因人为干预外,应采用基载主机优先。微机控制系统根据动态负荷预测的数据,控制蓄冷槽释冷量的大小,使蓄冷槽的蓄冷量当天基本用尽,又不能出现最后几小时蓄冷系统供不应求,使冰蓄冷系统运行到最经济的效果。
3.双工况主机单位供冷模式(部分负荷情况):11∶00~18∶00
在此时段内为电力平价期,电价适中。双工况主机设定为制冷工况并满负荷运行,满足空调冷负荷需要。开启双工况主机、乙二醇泵和冷冻水泵,从板换出来的9℃的乙二醇溶液先经过主机降温(7℃),主机的设定出口温度为5℃,然后进入储冰槽,储冰槽阀门处于调节状态,经过储冰槽冷却的乙二醇溶液在阀门的调节下达到设定的供水温度4℃,供给板换。同时通过调节CV8阀门控制板换二次侧的供水温度。
4.融冰单供冷模式(部分负荷情况):8∶00~11∶00;18∶00~23∶00 在此时段内电力高价期。融冰供冷满负荷运行,不足冷量由双工况主机满足,满足空调冷负荷需要。这样可避开电力高峰期,将系统的最高用电量降至最低,节约运行成本。融冰供冷量根据负荷变化由变频泵来调节。开启乙二醇泵和冷冻水泵,乙二醇泵变频使板换二次侧的供水温度稳定在设计温度(如7℃)。此时,主机退出运行,主机的旁通CV12打开,乙二醇溶液不在流经主机,直接进入冰槽,通过变频有效节省能耗。某些季节冷负荷低时往往只靠释冷便能满足冷负荷,要求微机控制系统根据动态蓄冷负荷预测,自动地控制系统的运行方式,使冰蓄冷系统运行在最佳状态,以达到削峰填谷节约能源的目的。
5.备份模式:7∶50~8∶00
在此时段内由于没有其它负荷,此间系统中除基载主机及相应设备正常工作,提供该建筑的基本冷负荷外,所有设备均停止运行,整个系统处于备份状态。此外,业主还可以根据该建筑的实际情况组成其他模式。