知识点:摇摆电流 电流是什么?首先回想下,我们学过的电流的定义是什么? 很简单,导体中的带电粒子的定向运动就是电流。 只有当物质内具有能自由移动的带电粒子,它才可以传输电流——即导电。这些参与导电的带电粒子称之为载流子。例如对金属来说,只有原子的外层电子才能充当载流子。 电流定义中的“定向运动”往往被错误的理解,很多人以为是指方向确定的运动,当然不是!交流电路中的电子的运动方向不是变来变去嘛?
知识点:摇摆电流
电流是什么?首先回想下,我们学过的电流的定义是什么?
只有当物质内具有能自由移动的带电粒子,它才可以传输电流——即导电。这些参与导电的带电粒子称之为载流子。例如对金属来说,只有原子的外层电子才能充当载流子。
电流定义中的“定向运动”往往被错误的理解,很多人以为是指方向确定的运动,当然不是!交流电路中的电子的运动方向不是变来变去嘛?
电子既然是微观粒子,它必定无时无刻不在做热运动,热运动是一种无规运动,如下图所示。
这种运动其实很快。例如,常温下金属中,电子热运动的速度的数量级达每秒数百公里!
仔细看这种无规运动,你会发现,任意时刻,各个粒子的运动方向是随机的。如果将这些粒子的速度矢量加起来,结果几乎为零。
现在给导体加上一个电场,电子在无规运动基础上,叠加了一种定向运动。假设某段时间,电场向左,则电子的运动看起来是下面这样的,红色小球代表晶格上的金属原子,快速运动的小点代表自由电子。
是不是看起来很快?那是因为电子运动确实很快!但实际上,这里面占比重很大的无规运动对电流并没有贡献,当把无规运动剔除之后,剩下的就像下面这个慢悠悠的样子。
的确,比起热运动速度来说,电子的定向运动的速度慢多了。电子这种”磨洋工”般的运动被称之为drift,即“漂移”。有时候,电子也会往相反方向跑,那是因为受到原子的碰撞。但总体上,电子是往一个方向运动的。
所以,这种定向运动是指,某个时刻全体参与导电的电子的速度之和不为零,而是总体朝某个方向。这个方向可随时改变,那就是交流电的情形。
所以,与其说电流是电荷的“定向运动”,还不如说电流是电荷的“集体运动”。
导体中的电流的大小用电流强度表示。电流强度定义为:单位时间内通过导体横截面的电量,即
我们学过一些包含“强度”二字的物理量,例如电场强度、磁感应强度等。它们一般都表示单位时间、单位面积(或单位体积、单位立体角)上的分摊。但电流强度中的“强度”二字并未体现电流对面积的分摊。
实际上,电流对面积的分摊的事情由另一个物理量负责,它就是电流密度。
既然电流的本质是电荷的定向运动,那么电流强度与漂移速度之间必定存在某种关系!
为了得到这个关系,先要明确一个概念——载流子浓度,即:单位体积内拥有的载流子的个数,用
表示。
设有导体横截面为
,载流子的浓度为
,漂移速度为
,所带电荷为
。
则位于面
的左侧长为
的导体内的电荷为
,这些电荷将在
的时间内穿过该面,故
电流密度是电流对面积的分摊,故电流密度的大小为
,但它被定义为矢量,方向即为带正电的载流子的漂移速度矢量的方向,故
据此可得到金属中电子的漂移速度,下面举个例子。
考虑铜导线,假设每个铜原子贡献一个电子作为载流子。现有1mol的铜,它的体积为
,摩尔质量为
,密度为
,则铜导线的载流子的浓度为
其中
为阿佛加德罗常数。查得铜的密度,代入得
的值大约为
个/立方米。
设铜导线的半径为
=0.8mm,流过的电流
为15A,
=1.6
C,计算得电子的漂移速度为
但在物理上,上述电流的定义其实只是一种狭义的定义。更一般的电流并非局限于导体中,只要是电荷的运动就是电流。比如氢原子的电子绕着原子核运动时,就在其轨道上形成了电流。
设电子带电量为
,运动的周期为
。那么每经过
的时间,就有
这么大的电荷量穿过回路上的任意截面,于是电流强度为
根据周期
与频率
以及角速度
的关系,该电流也可表示为
再例如,一个带电的金属盘,绕轴旋转,也形成不同半径的环电流。
这种电流不是一般的传导电流,不能产生焦耳热!不能形成真实的电路。
要不然,你给我算算氢原子的电子每秒产生多少焦耳热?
实际上,真空中的电流不满足欧姆定律。因为,对真空中带电粒子运动形成的电流来说,载流子并不受到类似于金属中的晶格的碰撞,因此真空没有电阻也没有电导。
电荷的运动产生电流,而电荷本身要激发电场,这容易造成一种误解,很多人因此认为形成电流的带电粒子的电场必定显露出来。但实际上,对一般导体中的传导电流来说,载流子是在大量带正电的金属离子组成的背景上流动的,导体本身是中性的!
往往我们将此类特殊的电流称之为一种“等效电流”,这里的等效指的是,它与普通的传导电流同等地产生磁场!
相关推荐:
1、GB5226.1-2008 机械电气安全
2、GB19517-2009国家电气设备安全技术规范