摘要 介绍了兰州某超高层酒店的项目概况及集中空调系统的设计参数。对空调系统冷热源、水系统、风系统在设计过程中采取的节能措施进行了分析,结合工程实际及气候条件,总结了适合类似项目的节能措施。
摘要
介绍了兰州某超高层酒店的项目概况及集中空调系统的设计参数。对空调系统冷热源、水系统、风系统在设计过程中采取的节能措施进行了分析,结合工程实际及气候条件,总结了适合类似项目的节能措施。
关键词
一级泵变流量系统 冷却塔 免费供冷 热回收 节能
作者
甘肃省建筑设计研究院有限公司 周志刚 苏继程 杨阳
项目概况
金色堤岸二期项目是由五星级酒店、高级景观住宅和配套裙楼组成的地标性超高层综合体,见图 1 。其中 1# 楼(办公用房、柏丽兹 · 云境酒店,共 39 层), 2# 楼(高级景观住宅,共 40 层),裙楼(共 7 层),地下车库、设备用房及人防工程(共地下 5 层)总建筑面积 112 047.35 m 2 。 1# 楼建筑物主体高 204.70m , 2# 楼建筑物主体高 153.95 m 。地下 1~5 层为人防工程、机械停车库、酒店库房、厨房、职工餐厅、办公和设备用房;裙楼 1 层为公共大堂、住宅门厅和配套用房, 2~4 层为餐饮中心, 5 层为会议中心, 6 , 7 层为康体中心和游泳池。 1# 楼 9~15 层为办公室, 17~39 层为酒店, 8 , 16 , 29 层为避难层。
图 1 建筑外景图
空调系统节能措施
裙楼及 1# 楼采用舒适性集中空调系统,通过逐项逐时空调负荷计算得冷负荷为 4 950 kW ,热负荷为 5 280 kW ,单位面积冷负荷指标为 81 W/m 2 ,单位面积热负荷指标为 87 W/m 2 。过渡季冷负荷按其总冷负荷的 20% 确定。
项目位于兰州滨河路,方案阶段业主曾经考虑采用水源热泵系统,但由于黄河丰水、枯水季节平均流量、水位变化较大,水含砂量大,需要增设中间换热器,取水系统初投资很大,且当地夏季制冷期短,投资回报期太长,因此未采用该方案。最终冷源选用技术成熟、制冷能效比高的水冷冷水机组提供供 / 回水温度为 7 ℃ /12 ℃的冷水。为适应建筑物冷负荷变化,采用大、小主机搭配,设计 2 台单台制冷量为 1 934 kW 的离心式冷水机组和 1 台制冷量为 1 146 kW 的螺杆式冷水机组。同时螺杆式冷水机组采用热回收型,最大热回收量为 1 283 kW ,夏季在优先启动螺杆式冷水机组供冷的同时有效利用冷凝器的散热为生活热水提供预热。冷源系统如图 2 所示。
项目周边无市政供热管网,热源为地下燃气锅炉房内 2 台单台制热量为 3 489 kW 的燃气真空锅炉,可提供供 / 回水温度为 60 ℃ /45 ℃的空调热水。燃气锅炉房设气候补偿器,根据室外温度与供热负荷的变化自动调节燃气量,合理匹配供水温度及流量,实现按需供热。空调冷、热源分别设置计量装置,循环泵耗电输热(冷)比均满足判定限值。
酒店空调水系统采用冬夏合用两管制闭式系统,根据空调设备的工作压力结合避难层竖向分区(低区为 1~15 层,高区为 16~39 层),低区与地下室冷热源系统直接连接,高区由 16 层避难层换热站隔绝换热后供给,空调冷水供 / 回水温度为 8.5 ℃ /13.5 ℃,热水供 / 回水温度为 55 ℃ /40 ℃。
随着测试、控制及冷水机组制造技术的发展和高精确度、高可靠性的流量检测手段与装置的应用,以及冷水机组自身调节能力的不断提高,冷水机组对负荷变化的响应时间大大缩短,控制先进的冷水机组可以在较大的范围内变流量运行。冷水机组占整个空调系统的能耗比例约为 20% ,为更好地适应负荷变化,冷水系统采用一级泵主机变流量系统,可以充分利用冷水机组流量的允许变化范围及流量许可变化率。通过控制最不利环路的末端压差,利用循环水泵变频运行适应负荷侧流量的变化,相比一级泵定流量系统,有效降低了冷水系统输送能耗,在循环水泵最低转速时采用压差旁通控制。空调热水循环泵配变频装置,结合气候补偿器来匹配供热负荷及流量的变化。
冷却塔风机设变速装置控制出水温度,同时设计冷却塔免费供冷系统。兰州地区室外湿球温度较低,干湿球温差较大,可在过渡季利用冷却塔提供高温冷水供给需制冷的房间,避免开启制冷主机。由于选用开式冷却塔,因此采用通过板式换热器的间接供冷系统,冷却塔侧供 / 回水温度为 8.5 ℃ /12 ℃,负荷侧供 / 回水温度为 10 ℃ /15 ℃。过渡季需供冷的地下酒店配套用房、 1# 楼内区餐饮包厢、西南朝向客房及商务办公用房空气 - 水系统冷负荷按其总冷负荷的 20% 确定,过渡季冷负荷为 750 kW 。冷却塔板式换热器二次水侧供 / 回水温度为 10 ℃ /15 ℃,冷却水温度比供水温度低 3~5 ℃,确定以环境湿球温度 6 ℃为理论转换温度 。根据冷却塔供水温度及兰州典型气象年逐时参数表 ,酒店运行时间为 08:00—23:00 ,过渡季节 3 , 4 , 9 , 10 月湿球温度低于 6 ℃的时间约为 786 h ,减少的冷水机组耗电量按 E L = Qτ / IPLV ( C )( Q 为过渡季冷负荷, kW ; τ 为冷却塔供冷时间, h ; IPLV ( C )为综合部分负荷性能系数,取 5.0 )计算,结果为 117 900 kW·h 。在 2019 年 10 月对该酒店进行了测试,在冷却塔直接供冷模式下,冷却塔出口温度为 9 ℃,用户末端的供水温度为 10 ℃。虽然与常规空调供冷系统相比进水温度提高了 2~3 ℃,但是对于过渡季而言,随着室外温度的下降,适当地提高冷水的温度也能满足空调负荷需求。
1 层大堂、 2~4 层餐饮大厅、 5 层多功能厅采用一次回风全空气定风量空调系统,冬、夏季按最小新风量运行,过渡季全新风运行,排风由单独设置的排风系统排出。冬、夏季一次回风全空气空调系统空气处理过程如图 3 , 4 所示。
7 层游泳池空调系统采用“三集一体”除湿热泵机组,可将池水表面的蒸发热损失回收利用,转移到池水和空气中,弥补池水和空气的热损失,同时实现空调除湿功能,工作原理见图 6 。
酒店游泳池以冬季计算的散湿量作为选型依据,选择 1 台除湿量为 75 kg/h 的“三集一体”除湿热泵机组。为避免游泳池内产生结露现象,防结露传感器安装在室内防结露最不利点上,当其感应该点温度低于室内空气露点温度 2.8 ℃之内时,“三集一体”除湿热泵机组自动调低湿度,使该点温度始终高于室内空气露点温度,防止结露。
空调自控设计
存在的问题和总结
本文引用格式:周志刚,苏继程,杨阳 . 兰州某超高层酒店空调系统节能设计 [J]. 暖通空调, 2020 , 50 ( 10 ): 50-53 , 35