大跨空间结构的发展——回顾与展望
liuqiang4902636
2005年06月07日 15:12:01
只看楼主

大跨空间结构的发展——回顾与展望 沈世钊 (哈尔滨工业大学 哈尔滨 150090) 摘要:大跨空间结构是目前发展最快的结构类型。大跨度建筑及作为其核心的空间结构技术的发展状况是代表一个国家建筑科技水平的重要标志之一。本文就空间网格结构和张力结构两大类介绍了国内外(但主要是国外)空间结构的发展现状和前景。对这一领域几个重要理论问题,包括空间结构的形态分析理论、大跨柔性属盖的动力风效应、网壳结构的稳定性和抗震性能等问题的研究提出了看法。

大跨空间结构的发展——回顾与展望

沈世钊 (哈尔滨工业大学 哈尔滨 150090)


摘要:大跨空间结构是目前发展最快的结构类型。大跨度建筑及作为其核心的空间结构技术的发展状况是代表一个国家建筑科技水平的重要标志之一。本文就空间网格结构和张力结构两大类介绍了国内外(但主要是国外)空间结构的发展现状和前景。对这一领域几个重要理论问题,包括空间结构的形态分析理论、大跨柔性属盖的动力风效应、网壳结构的稳定性和抗震性能等问题的研究提出了看法。

一、概 述

在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。
  近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如 1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。
  由于经济和文化发展的需要,人们还在不断追求覆盖更大的空间,例如有人设想将整个街区、整个广场、甚至整个山谷覆盖起来形成一个可人工控制气候的人聚环境或休闲环境;为了发掘和保护古代陵墓和重要古迹,也有人设想采用超大跨度结构物将其覆盖起来形成封闭的环境。目前某些发达国家正在进行尺度为300m以上的超大跨度空间结构的设计方案探讨。
  可以这样说,大跨空间结构是最近三十多年来发展最快的结构形式。国际《空间结构》杂志主编马考夫斯基(Z.S.Makowski)说:在60年代“空间结构还被认为是一种兴趣但仍属陌生的非传统结构,然而今天已被全世界广泛接受。”从今天来看,大跨度和超大跨度建筑物及作为其核心的空间结构技术的发展状况已成为代表一个国家建筑科技水平的重要标志之一。
  世界各国为大跨度空间结构的发展投入了大量的研究经费。例如,早在20年前美国土木工程学会曾组织了为期 10年的空间结构研究计划,投入经费 1550万美元。同一时期,西德由斯图加特大学主持组织了一个“大跨度空间结构综合研究计划”,每年研究经费100万马克以上。这些研究工作为各国大跨度建筑的蓬勃发展奠定了坚实的理论基础和技术条件。国际壳体和空间结构学会(IASS)每年定期举行年会和各种学术交流活动,是目前最受欢迎的著名学术团体之一。
  我国大跨度空间结构的基础原来比较薄弱,但随着国家经济实力的增强和社会发展的需要,近十余年来也取得了比较迅猛的发展。工程实践的数量较多,空间结构的类型和形式逐渐趋向多样化,相应的理论研究和设计技术也逐步完善。以北京亚运会(1990)、哈尔滨冬季亚运会(1996)、上海八运会(1997)的许多体育建筑为代表的一系列大跨空间结构——作为我国建筑科技进步的某种象征在国内外都取得了一定影响。
  种种迹象说明,我国虽然尚是一个发展中国家,但由于国大人多,随着国力的不断增强,要建造更多更大的体育、休闲、展览、航空港、机库等大空间和超大空间建筑物的需求十分旺盛,而且这种需求量在一定程度上可能超过许多发达国家。这是我国空间结构领域面临的巨大机遇。
  但与国际先进水平相比,我国大跨空间结构的发展仍存在一定

1118128650852.gif

liuqiang4902636
2005年06月07日 15:12:46
2楼
二、空间网格结构

  网壳结构的出现早于平板网架结构。在国外,传统的肋环型穹顶已有一百多年历史,而第一个平板网架是1940年在德国建造的(采用Mero体系)。中国第一批具有现代意义的网壳是在50和60年代建造的,但数量不多。当时柱面网壳大多采用菱形“联方”网格体系,1956年建成的天津体育馆钢网壳(跨度52m)和l961年同济大学建成的钢筋混凝土网壳(跨度40m)可作为典型代表。球面网壳则主要采用助环型体系,1954年建成的重庆人民礼堂半球形穹顶(跨度46.32m)和1967年建成的郑州体育馆圆形钢屋盖(跨度64m)习能是仅有的两个规模较大的球面网壳。自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。
  相对而言自第一个平板网架(上海师范学院球类房,31.5mx40.5m)于1964年建成以来,网架结构一直保持较好发展势头。1967年建成的首都体育馆采用斜放正交网架,其矩形平面尺寸为99mx112m,厚6m,采用型钢构件,高强螺栓连接,用钢指标65kg每平米(1kg每平米≈9.8pa)。1973年建成的上海万人体育馆采用圆形平面的三向网架净架110m,厚6m,采用圆钢管构件和焊接空心球结点,用钢指标47kg每平米。当时平板网架在国内还是全新的结构形式,这两个网架规模都比较大,即使从今天来看仍然具有代表性,因而对工程界产生了很大影响。在当时体育馆建设需求的激励下,国内各高校、研究机构和设计部门对这种新结构投入了许多力量,专业的制作和安装企业也逐渐成长,为这种结构的进一步发展打下了较坚实的基础。改革开放以来的十多年里是我国空间结构快速发展的黄金时期而平板网架结构就自然地处于捷足先登的优先地位。甚至80年代后期北京为迎接1990年亚运会兴建的一批体育建筑中,多数仍采用平板网架结构。在这一时期,网架结构的设计已普遍采用计算机,生产技术也获得很大进步,开始广泛采用装配式的螺栓球结点,大大加快了网架的安装。
  但事物总是存在两个方面。在平板网架结构一枝独秀地加快发展的同时,随着经济和文化建设需求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑功能和建筑造型多样化的要求。这种现实需求对网壳结构、悬索结构等多种空间结构形式的发展起了良好的刺激作用。由于网壳结构与网架结构的生产条件相同,国内已具备现成的基础,因而从80年代后半期起,当相应的理论储备和设计软件等条件初步完备,网壳结构就开始了在新的条件下的快速发展。建造数量逐年增加,各种形式的网壳,包括球面网壳、柱面网壳、鞍形网壳(或扭网壳)、双曲扁网壳和各种异形网壳,以及上述各种网壳的组合形式均得到了应用;还开发了预应力网受、斜拉网壳(用斜拉索加强网壳)等新的结构体系。近几年来建造了一些规模相当宏大的网壳结构。例如1994年建成的天津体育馆采用肋环斜杆型(Schwedler型)双层球面网壳,其圆形平面净跨108m,周边伸出13.5m,网壳厚度3m,采用圆钢管构件和焊接空心球结点,用钢指标55kg每平米。1995年建成的黑龙江省速滑馆用以覆盖400m速滑跑道,其巨大的双层网壳结构由中央柱面壳部分和两端半球壳部分组成,轮廓尺寸86.2mx191.2m,覆盖面积达15000平米,网壳厚度2.1m,采用圆钢管构件和螺栓球结点,用钢指标50kg每平米。1997年刚建成的长春万人体育馆平面呈桃核形,由肋环型球面网壳切去中央条形部分再拼合而成,体型巨大,如果将外伸支腿计算在内,轮廓尺寸达146mx191.7m,网壳厚度2.8m,其桁架式“网片”的上、下弦和腹杆一律采用方(矩形)钢管,焊接连接,是我国第一个方钢管网壳。这一网壳结构的设计方案是由国外提出的,施工图设计和制作安装由国内完成。
  在网壳结构的应用日益扩大的同时,平板网架结构并未停止其自身的发展。这种目前来看已比较简单的结构有它自己广泛的使用范围,跨度不拘大小;而已近几年在一些重要领域扩大了应用范围。例如在机场维修机库方面,广州白云机场80m机库(199年)、成都机场 140m机库(1995年)、首都机场2Zmx150m机库(1996年)等大型机库都采用平板网架结构。这些三边支承的平板网架规模巨大,且需承受较重的悬挂荷载,常采用较重型的焊接型钢(或钢管)结构,有时需采用三层网架;其单位面积用钢指标可达到一般公用建筑所用网架的一倍或更多。单层工业厂房也是近几年来平板网架获得迅速发展的一个重要领域。为便于灵活安排生产工艺,厂房的柱网尺寸有日益扩大的趋向,这时平板网架结构就成为十分经济适用的理想结构方案。1991年建成的第一汽车制造厂高尔夫轿车安装车间面积近8万平米(189.2mx421.6m),柱网21mx12m,采用焊接球结点网架,用钢指标31kg每平米。该厂房是目前世界上面积最大的平板网架结构。1992年建成的天津无缝钢管厂加工车间面积为6万平米(108m x 564m),柱网36m x 18m,采用螺栓球结点网架,用钢指标32kg每平米,与传统的平面钢桁架方案比较,节省了47%。鉴于这类厂房的巨大圆
回复
liuqiang4902636
2005年06月07日 15:13:24
3楼
三、张力结构

  中国现代悬索结构的发展始于50年代后期和60年代,北京的工人体育馆和杭州的浙江人民体育馆是当时的两个代表作。北京工人体育馆建成于1961年,其圆形屋盖采用车辐式双层悬索体系,直径达94m。浙江人民体育馆建成于1967年,其屋盖为椭圆平面,长径80m,短径60m.采用双曲抛物面正交索网结构。
  世界上最早的现代悬索屋盖是美国于1953年建成的Raleigh体育馆,采用以两个斜放的抛物线拱为边缘构件的鞍形正交索网。我国建造的上述两个悬索结构无论从规模大小或技术水平来看在当时都可以说是达到国际上较先进水平的。但此后我国悬索结构的发展停顿了较长一段时间,一直到80年代,由于大跨度建筑的发展而提出的对空间结构形式多样化的要求,这种形式丰富的轻型结构重新引起了人们的热情,工程实践的数量有较大增长,应用形式趋于多样化理论研究也相应地开展起来形势相当喜人。
  柔性的悬索在自然状态下不仅没有刚度,其形状也是不确定的。必须采用敷设重屋面或施加预应力等措施,才能赋予一定的形状,成为在外荷作用下具有必要刚度和形状稳定性的结构。值得称道的是,我国的科技人员在学习和吸收国外先进经验的同时,在结合工程具体条件创造更加符合中国国情的结构应用形式方面做了不少尝试和创新。
  例如,山东省淄博等地把悬索结构应用于中小型屋盖结构中,颇具特色。他们主要采用单层平行索系或伞形辐射索系加钢筋混凝土屋面板的构造方式。施工时先将屋面板挂在索上(使索正好位于板缝中),在板上临时加载使索伸长,然后在板缝中浇灌细石混凝土,待达到一定强度后卸去临时荷载,即形成具有一定预应力的“悬挂薄壳”。这种构造和施工方法不需要复杂的技术和设备,造价也比较低。
  为了提高单层悬索的形状稳定性,在单层平行索系上设置横向加劲梁(或桁架)的办法也是十分有效的。横向加劲构件的作用有二:一是传递可能的集中荷载和局部荷载使之更均匀地分配到各根平行的索上;二是通过下压横向加劲构件的两端到预定位置或通过对索进行张拉使整个体系建立预应力,从而提高屋盖的刚度。从安徽体育馆等几个工程的实践来看这种混合结构体系施工方便,用料经济,是一种成功的创造。
  由一系列承重索和曲率相反的稳定索组成的预应力双层索系,是解决悬索结构形状稳定性的另一种有效形式。其工作机理与预应力索网有类似之处。1966年瑞典工程师Jawerth首先在斯德哥尔摩滑冰馆采用由一对承重索和稳定索组成被称为“索桁架”的专利体系,其后这种平面双层索系在各国获得相当广泛刚用。我国无锡体育馆也采用了这种体系。作为对这种体系的改进,吉林滑冰馆采用了一种新型的空间双层索系,它的承重索与稳定索在不同一阵平面内,而是错开半个柱距,从而创造了新颖的建筑造型,而且很好地
解决了矩形平面悬索屋盖通常遇到的屋面排水问题。这一新颖结构参加了1987年在美国举行的国际先进结构展览。
  我国悬索结构发展的另一个特点是在许多工程中运用了各种组合手段。主要的方式是将两个以上预应力索网或其它悬索体系组合起来,并设置强大的拱或刚架等结构作为中间支承,形成各种形式的组合屋盖结构。例如四川省体育馆和青岛市体育馆的屋盖是由两片索网和作为中间支承的一对钢筋混凝土拱组合起来的。北京朝阳体育馆由两片索网和被称为“索拱体系”的中央支承结构组成。中央索拱体系由两条悬索和两个钢拱组成,本身是一种混合结构,其概念也具有创新意义。采用各种组合式屋盖不仅进一步丰富了建筑
造型,而且往往能更好地满足某些建筑功能上的要求,例如为体育馆建筑提供了“最优”的内部空间。单纯从技术经济角度,单片索网或其它悬索体系可以经济地跨越很大的跨度,本非必须采用中间支承结构。所以,采用组合式屋盖在很多场合毋宁说主要是出于建筑造型和使用功能方面的考虑。从我国这几年的实践效果来看,它在这方面是起到了预期作用的。
  将斜拉体系引用到屋盖结构中来,可形成一系列混合结构形式。这种体系利用由塔柱顶端伸出的斜拉索为屋盖的横跨结构(主梁、桁架、平板网架等)提供了一系列中间弹性支承,使这些横跨结构不需靠增大结构高度和构件截面即能跨越很大的跨度。前面提到的斜拉网壳也属于这类混合结构。
  尽管十余年来悬索结构取得了可喜的发展,但与网架和网壳结构比较其发展相对较慢,分析起来可能有两方面的原因:(1)悬索结构的设计计算理论相对复杂一些,又缺少具有较高商品化程度的实用计算程序,因而难于为一般设计单位普遇采用;(2)尽管悬索结构的施工并不复杂,但一般施工单位对它不够熟悉,更没有形成专业的悬索结构施工队伍,这也影响建设单位和设计单位大胆采用这种结构形式。
  与此同时,同属于张力结构体系、在国外应用很广的膜结构或索-膜结构在我国则处于艰难起步阶段。除了设计理论储备和生产条件方面的原因外,缺少符合建筑要求的国产膜材是一个主要的制约因素。从国外情况看,1970
回复
liuqiang4902636
2005年06月07日 15:13:47
4楼
四、理论研究

  (1)空间结构的应用是同相应的理论研究同步发展的。应该说我们在空间结构理论研究大面做了许多工作。主要研究内容偏重于静力作用下的结构性状和分析方法,以满足一般设计工作的要求为主要目标。这些研究为我国空间结构的发展提供了基本的理论支持。早期的工作偏重于以连续化理论为基础的各种解析方法的研究,例如平板网架的拟板解法、网壳的拟壳解法;悬索结构在荷载作用下要产生较大位移,因而计算中应考虑几何非线性,当时发展了一系列适用于不同形式悬索结构的考虑大位移的解析方法。在一段时期内,当计算机尚未广泛运用于结构计算以前,各种解析方法曾对空间结构的发展起过重要作用,但解析方法终究有其局限性,它们具有不同程度的近似性,而且往往仅适用于某些特定的结构形式。
  计算机的普及和有限元分析方法的广泛运用为空间结构的加速发展创造了真正的条件。许多大型的和特殊形式的新颖空间结构只能用计算机程序进行分析。我国从80年代开始陆续编制出适用于不同空间结构的各种计算机分析程序和CAD软件,且功能日益完备。现在我们设计空间结构几乎全部依靠计算机。事实上,当设计由成千杆件和结点组成的大型空间网格结构,尤其是当采用螺栓球结点时,离开适用的CAD软件是无法想象的。但也应当指出,对某些形式的悬索结构来说,简单实用的解析方法仍然有意义;对于像双层索系等比较简单的体系,解析力法已完全可以提供准确而完整的计算结果。例如,吉林滑冰馆的大型悬索屋盖设计是由简单的手筹来完成的。
  十余年来关于空间结构研究的一个特点是做了大量的试验。这是我国结构研究领域的一个优良传统。80年代乃至90年代初期建造的几乎每一个有代表性的大型空间结构,都作过模型试验或现场实测。这些试验研究同理论分析工作一起,以及它们之间的相互印证,使我们对原来可能比较生疏的各种新颖空间结构的基本性能了解得越来越全面,为设计这些结构积累起比较丰富的理论储备。
  (2)除了关于各种类型空间结构的基本性状和计算方法的研究以外,一些更为基础性的理论研究也受到了重视,例如关于网壳稳定性的研究已取得许多重要成果。
  稳定性是网壳结构、尤其是单层网壳结构设计中的关键问题,也是国内外十多年来的热点研究领域。结构的稳定性能可以从其荷载-位移全过程曲线中得到完整的概念;这种全过程曲线要由较精确的非线性分析得出。从非线性分析的角度来考察,结构的稳定问题和强度问题是相互联系在一起的。结构的荷载-位移全过程曲线可以把结构的强度、稳定性以至于刚度的整个变化历程表示得清清楚楚。当考察创始缺陷和荷载分布方式等因素对实际网壳结构稳定性能的影响时,也均可从全过程曲线的规律性变化中进行研究。
  但是当利用计算机对具有大量自由度的复杂体系进行有效的非线性有限元分析尚未能允分实现的时候,要进行网壳结构的全过程分析是十分困难的。在较长一段时期内,人们不得不求助于连续化理论(“拟壳法”)将网壳转化为连续壳体结构,然后通过某些近似的非线性解析方法来求出壳体结构的稳定性承载力。这种方法显然有较大局限性:连续化壳体稳定性理论本身并未完善,事实上仅对少数特定的壳体(例如球面壳)才能得出较实用的公式;此外,所讨论的壳体一般是等厚度的和各向同性的,无法反映实际网壳结构的不均匀构造和各向异性的特点。因此,在许多重要场合还必须依靠细致的模型试验来测定稳定性承载力,讲与可能的计算结果相互印证。
  随着计算机的发展和广泛应用,非线性有限元分析方法兴起,并逐渐成为结构稳定性分析中的有力工具。我国从80年代后期开始也积极开展以非线性全过程分析为基础的网壳稳定性研究。在总结国外已取得成果的基础上,在理论表达式的精确化、合理选用平衡路径跟踪的计算方法、灵活的迭代策略等方面进行了深入细致的探索,使具有大量自由度的复杂结构体系的全过程分析成为可能;并编制出相应的分析程序。此外,在研究初始缺陷对网壳稳定性的影响时,对所提出的“一致缺陷模态祛”(即认为初始缺陷按最低屈
曲模态分布时可能具有最不利影响)的合理性和有效性进行了仔细论证,并使之规范化。
  在上述理论成果的基础上,采用大规模参数分析的方法,进行了网壳稳定性分所实用方法的研究。即结合不同类型的网壳结构,在其基本参数(几何参数、构造参数、荷载参数等)的常用变化范围内,进行大规模的实际结构全过程分析,对所得结果进行统计分析和归纳,考察网壳稳定性的变化规律,最后通过回归分析提出网壳稳定性验算的实用公式。近几年来,共计对2800余例各种形式的实际尺寸网壳结构进行了全过程分析,得到了相当规律性的结果。所提出的实用公式用起来比较简便,然而是建立在精确分析方法的基础之上的。这一工作很受广大设计部门欢迎。这些公式已列入正在编制的“网壳结构技术规程”(征求意见稿)。应该说,我国关于网壳稳定性的研究是相当深入和细致的。
  (3)
回复
liuqiang4902636
2005年06月07日 15:14:48
5楼
四、理论研究

  (1)空间结构的应用是同相应的理论研究同步发展的。应该说我们在空间结构理论研究大面做了许多工作。主要研究内容偏重于静力作用下的结构性状和分析方法,以满足一般设计工作的要求为主要目标。这些研究为我国空间结构的发展提供了基本的理论支持。早期的工作偏重于以连续化理论为基础的各种解析方法的研究,例如平板网架的拟板解法、网壳的拟壳解法;悬索结构在荷载作用下要产生较大位移,因而计算中应考虑几何非线性,当时发展了一系列适用于不同形式悬索结构的考虑大位移的解析方法。在一段时期内,当计算机尚未广泛运用于结构计算以前,各种解析方法曾对空间结构的发展起过重要作用,但解析方法终究有其局限性,它们具有不同程度的近似性,而且往往仅适用于某些特定的结构形式。
  计算机的普及和有限元分析方法的广泛运用为空间结构的加速发展创造了真正的条件。许多大型的和特殊形式的新颖空间结构只能用计算机程序进行分析。我国从80年代开始陆续编制出适用于不同空间结构的各种计算机分析程序和CAD软件,且功能日益完备。现在我们设计空间结构几乎全部依靠计算机。事实上,当设计由成千杆件和结点组成的大型空间网格结构,尤其是当采用螺栓球结点时,离开适用的CAD软件是无法想象的。但也应当指出,对某些形式的悬索结构来说,简单实用的解析方法仍然有意义;对于像双层索系等比较简单的体系,解析力法已完全可以提供准确而完整的计算结果。例如,吉林滑冰馆的大型悬索屋盖设计是由简单的手筹来完成的。
  十余年来关于空间结构研究的一个特点是做了大量的试验。这是我国结构研究领域的一个优良传统。80年代乃至90年代初期建造的几乎每一个有代表性的大型空间结构,都作过模型试验或现场实测。这些试验研究同理论分析工作一起,以及它们之间的相互印证,使我们对原来可能比较生疏的各种新颖空间结构的基本性能了解得越来越全面,为设计这些结构积累起比较丰富的理论储备。
  (2)除了关于各种类型空间结构的基本性状和计算方法的研究以外,一些更为基础性的理论研究也受到了重视,例如关于网壳稳定性的研究已取得许多重要成果。
  稳定性是网壳结构、尤其是单层网壳结构设计中的关键问题,也是国内外十多年来的热点研究领域。结构的稳定性能可以从其荷载-位移全过程曲线中得到完整的概念;这种全过程曲线要由较精确的非线性分析得出。从非线性分析的角度来考察,结构的稳定问题和强度问题是相互联系在一起的。结构的荷载-位移全过程曲线可以把结构的强度、稳定性以至于刚度的整个变化历程表示得清清楚楚。当考察创始缺陷和荷载分布方式等因素对实际网壳结构稳定性能的影响时,也均可从全过程曲线的规律性变化中进行研究。
  但是当利用计算机对具有大量自由度的复杂体系进行有效的非线性有限元分析尚未能允分实现的时候,要进行网壳结构的全过程分析是十分困难的。在较长一段时期内,人们不得不求助于连续化理论(“拟壳法”)将网壳转化为连续壳体结构,然后通过某些近似的非线性解析方法来求出壳体结构的稳定性承载力。这种方法显然有较大局限性:连续化壳体稳定性理论本身并未完善,事实上仅对少数特定的壳体(例如球面壳)才能得出较实用的公式;此外,所讨论的壳体一般是等厚度的和各向同性的,无法反映实际网壳结构的不均匀构造和各向异性的特点。因此,在许多重要场合还必须依靠细致的模型试验来测定稳定性承载力,讲与可能的计算结果相互印证。
  随着计算机的发展和广泛应用,非线性有限元分析方法兴起,并逐渐成为结构稳定性分析中的有力工具。我国从80年代后期开始也积极开展以非线性全过程分析为基础的网壳稳定性研究。在总结国外已取得成果的基础上,在理论表达式的精确化、合理选用平衡路径跟踪的计算方法、灵活的迭代策略等方面进行了深入细致的探索,使具有大量自由度的复杂结构体系的全过程分析成为可能;并编制出相应的分析程序。此外,在研究初始缺陷对网壳稳定性的影响时,对所提出的“一致缺陷模态祛”(即认为初始缺陷按最低屈
曲模态分布时可能具有最不利影响)的合理性和有效性进行了仔细论证,并使之规范化。
  在上述理论成果的基础上,采用大规模参数分析的方法,进行了网壳稳定性分所实用方法的研究。即结合不同类型的网壳结构,在其基本参数(几何参数、构造参数、荷载参数等)的常用变化范围内,进行大规模的实际结构全过程分析,对所得结果进行统计分析和归纳,考察网壳稳定性的变化规律,最后通过回归分析提出网壳稳定性验算的实用公式。近几年来,共计对2800余例各种形式的实际尺寸网壳结构进行了全过程分析,得到了相当规律性的结果。所提出的实用公式用起来比较简便,然而是建立在精确分析方法的基础之上的。这一工作很受广大设计部门欢迎。这些公式已列入正在编制的“网壳结构技术规程”(征求意见稿)。应该说,我国关于网壳稳定性的研究是相当深入和细致的。
  (3)
回复
nmgp
2005年06月07日 20:33:59
6楼
[摘 要]結構設計的目的、結構設計的四項基本原則。

[關鍵字]剛柔相濟、多道防線、抓大放小、打通關節、建築結構。

結構的設計的目的是使建築物安全和能夠適應使用的要求。結構設計還要遵循結構設計的主要要求是結構安全可靠(節省資金也是一項),所以,我們在結構設計中要保證這樣要求和遵循這個原則。我們現在學習的結構有:鋼筋混凝土結構、砌體結構、剛結構、道路和橋梁結構,我們畢業後將要從事的也是結構的設計,我們不能不去考慮一下有關結構設計的要求及其基本的原則,結構設計的好壞直接影響建築物的使用和建築業的發展,同時,還會影響到使用者的安全。基於這樣的要求,下面來總結一下結構設計的基本原則。
結構設計的四項基本原則:

1、剛柔相濟
合理的建築結構體系應該是剛柔相濟的。結構太剛則變形能力差,強大的破壞力瞬間襲來時,需要承受的力很大,容易造成局部受損最後全部毀壞;而太柔的結構雖然可以很好的消減外力,但容易造成變形過大而無法使用甚至全體傾覆。結構是剛多一點好,還是柔多一點好?剛到什麽程度或柔到什麽程度才算合適呢?這些問題歷來都是專家們爭論的焦點,現今的規範給出的也只是一些控制的指標,但無法提供“放之四海皆准”的精確答案。最後,專家們達成難以準確言傳的共識:剛柔相濟乃是設計者的追求。

2、多道防線
安全的結構體系是層層設防的,災難來臨,所有抵抗外力的結構都在通力合作,前仆後繼。這時候,如果把“生存”的希望全部寄託在某個單一的構件上,是非常非常危險的。多肢牆比單片牆好,框架剪力牆比純框架好等等,就是體現了多道防線的設計思路。也許我們會自信計算的正確性,但更要牢記絕對安全的防備構件是存在的,還是應該多多考慮:當第一道防線跨了,第二道防線能頂住嗎?或者能頂住多少?還有沒有第三、第四道防線?

3、抓大放小
“強柱弱梁”、“強剪弱彎”等是建築結構設計中非常重要的概念。有人問:爲什麽不是“強柱強梁”“強剪強彎”呢?爲什麽所有構件都很強的結構體系反而不好,甚至會有安全隱患呢?
這裏面首先包含著一個簡單的道理:絕對安全的結構是沒有的。簡單地說,雖然整個結構體系是由各種構件協調組成一體,但各個構件擔任的角色不盡相同,按照其重要性也就有輕重之分。一旦不可意料的破壞力量突然襲來,各個構件協作抵抗的目的,就是爲了保住最重要的構件免遭摧毀或者至少是最後才遭摧毀,這時候犧牲在所難免,讓誰犧牲呢?明智之舉是要讓次要構件先去承擔災難。“寧爲玉碎,不爲瓦全”,如果平均用力,可能會“玉石俱粉”,損失則更大矣!在建築結構中,柱倒了,梁會跟著倒;而梁倒了,柱還可以不倒的。可見柱承擔的責任比梁大,柱不能先倒。爲了保證柱是在最後失效,我們故意把梁設計成相對薄弱的環節,使其破壞在先,以最大限度減少可能出現的損失。如果梁柱等同看待,企圖讓他們都“堅不可摧”,則可能會造成同時破壞,後果會更糟糕,損失會更大。所以關鍵時刻要分清主次,抓大放小,也就是要取大舍小。

4、打通關節
在結構體系中,所謂關節,是指變化相聚之處,或變化出現的地方。不同類型的構件相接處,同一構件截面改變之處,是關節。廣義上,諸如結構錯層之處,體量改變之處,轉換層亦是關節。關節無處不在,因爲結構體系乃是變化的統一。外力突然襲來之時,對於單一的構件,力量的傳遞簡明,因而容易控制。對於複雜的結構體系,關節的複雜性難於預測和控制,即使從理論上保證了每個組成構件的強度和剛度,但因關節的普遍存在,力量的傳遞往往不能暢通而出現集中甚至中斷,破壞由此而發生。歷次災害表明,從節點開始破壞的建築占了相當大的比例。

所以理想的結構體系當然是渾然一體的--也就是沒有任何關節的,這樣的結構體系使任何外力都能迅速傳遞和消減。基於這個思路,設計者要做的就是要盡可能地把結構中各種各樣的關節“打通”,使力量在關節處暢通無阻。中醫上雲:“通則不痛,痛則不通”,結構就象一個人,氣穴若不能暢通,癥結和隱患就會産生。在設計的四項基本原則中,“剛柔相濟”,“多道防線”,“抓大放小”是設計概念中的戰略問題,但要想得讓這些戰略思想得以實現,靠的是“打通關節”這個原則作爲保證的,結構設計的具體操作,最後全都歸到“打通關節”的貫徹和實施上來。

如何打通關節?在設計概念裏,要解決的是外力在結構體系內重分配的問題,要確保力量是按照各構件的剛度大小進行分配的,避免出現不合理的集中,最終達致靜態的平衡。因結構形本爲“靜”,滅於“動”中。所有 “動” 的因素對於結構均爲不利。打通關節保持平衡的目的其實就是使其永遠處於原始的靜態,當力量不能暢通時,構件與構件之間,構件的組成元素與元素之間的靜態平衡一旦被破壞,結構變成機動,“動”即是死,即爲終結。可見設計者是協調者,其任務是讓所有互不相關的靜態構件相聚之後依然處於靜態(也就是
回复
zyzl
2006年02月05日 21:23:33
7楼
好文章,老沈可是N人啊
回复
xiaozh05
2006年02月16日 12:34:36
8楼
都是好文章哦,第二篇好像没贴完呢?:]
回复

相关推荐

APP内打开