电网谐波治理和无功补偿技术及装备
电网谐波治理和无功补偿技术及装备作者:罗安 编著出版社:中国电力出版社出版时间:2006《电网谐波治理和无功补偿技术及装备》以电网谐波治理和无功补偿技术与装备为核心,面向工程应用背景,围绕混合型有源电力滤波器的结构、谐波检测和控制方法及工程实现技术等方面,展开讨论了电网谐波治理和无功补偿的诸多理论和技术问题,介绍了无源滤波器的优化设计、三相互感对滤波性能的影响,讨论了谐波和无功的快速检测方法,从工程应用的角度出发,给出了几种典型混合有源电力滤波器的数学模型并分析其谐波治理性能,阐述了两种实用的谐波治理闭环调节方法,并描述了混合有源电力滤波器和无功补偿装置及基于IGBT的STATCOM的具体实现技术。《电网谐波治理和无功补偿技术及装备》有一定的理论深度,也有很直观的仿真图形和程序,强调理论联系实际,有许多内容是作者和课题组从事教学和科研工作的成果与经验积累。《电网谐波治理和无功补偿技术及装备》可供从事电气工程、控制工程及相关领域的工程技术和管理人员学习,可作为硕士研究生、博士研究生学习、参考用书,也可作为专业培训班的教材
高压电网无功补偿及谐波治理
摘要 阐述电网无功补偿及滤波装置的重要性,以及安装滤波装置后所产生的效果及经济效益。 1 无功电量的概念 在平稳直流状态下, 功率等于电压与电流的乘积, 即:P=U×I。 在交流状态下, 由于电压与电流均为时间的周期函数,则功率由下式来进行计算: 当电网中的负荷含有电抗成分(通常为感性成分)或者负荷具有非线性特性时,电压与电流就会有相位差或者电流含有谐波成分,此时电网传输能量的能力下降,功率的计算值小于电压有效值与电流有效值的乘积,于是就引入了功率因数的概念。功率因数的英文全称是Power factor,简称PF。PF 是一个无量纲的小于1 的实数。 当电压与电流用有效值表示并引入功率因数时,则功率由下式来进行计算:
谈谈电网“污染”---谐波
摘要: 电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文…… 关键词: 电力系统 电网污染 谐波电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。 供电系统谐波的定义是对周期性非正弦电量进行
小议配电网谐波的产生与危害治理
经济的飞速 发展 带来供电紧张,为解决供电紧张,一方面要建设许多新的电厂和输电线路,另一方面要高效利用现有的电力资源,减少电力损耗。谐波是导致电力损耗增加,供电质量下降的重要因素。 1 电力系统谐波的基本特性和测量 谐波是一个周期电气量的正弦波分量,其频率是基波频率的整数倍数。理论上看,非线性负荷是配电网谐波的主要产生因素。非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。 非线性负荷除了产生基频整次谐波外,还可能产生低于基频的次谐波,或高于基波的非整数倍谐波。电力系统中出现系统短路、开路等事故
UPS谐波危害的认识与治理
谐波的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。 谐波的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。 对于我们在长期使用的UPS电源,到底UPS电源会产生哪些谐波呢,目前所产生的谐波到底会有哪些危害了,具体的危害给大家讲讲: 1、对断路器、漏电保护器、继电器等保护、自控装置产生干扰,造成误动作。使电动机产生附加损耗和发热、产生脉动转矩和噪音。使电力变压、使电动机产生附加损
谐波危害这么多,要怎么治理呢?
一、谐波的定义电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。举个常见的例子来说,**节能灯在使用量所占比重较小的电网中运行,的确比常用的白炽灯好,不仅亮度高又省电,而且使用寿命也长。但是相反,在大量投运节能灯后,就会发现节能灯的损坏率大大提高。这是由于节能灯是非线性负荷,它产生较大的谐波污染了这一片电网,造成三相负荷基本平衡情况下,中心线电流居高不下,线电压与相电压之比比1要小得多,造成了该片电网供电质量下降,用电设备发热增加,