下面介绍在确保高可靠性、高安全性的前提下,为提高本项目能源系统的运营效率和管理水平,并实现节能减排目标,所采取的能源管理技术措施和实际效果。成都东客站整体外貌 工程概况1. 成都东客站位于成都成华开发区,三环路成渝立交处;该项目是成都2010年重点建设工程,是西南地区标志性建筑之一。 2. 成都东站包括东广场、西广场以及站房3个部分。 成都东站占地面积大约45333㎡;站场设有14个站台、26条股道;
下面介绍在确保高可靠性、高安全性的前提下,为提高本项目能源系统的运营效率和管理水平,并实现节能减排目标,所采取的能源管理技术措施和实际效果。
成都东客站整体外貌
工程概况
1. 成都东客站位于成都成华开发区,三环路成渝立交处;该项目是成都2010年重点建设工程,是西南地区标志性建筑之一。
2. 成都东站包括东广场、西广场以及站房3个部分。
成都东站占地面积大约45333㎡;站场设有14个站台、26条股道;
站房面积大约108000㎡,设有5层,自上向下:候车层(3F)、站台层(2F)、出站
层(1F)、地2层(-1F)、地7层(-2F)。3. 成都东客站能源管理系统监控范围:适用于东客站上下5层(包含夹层)所有动力柜上的智能仪表。
能源管理需求分析
由于成都东客站是一个大型现代化综合交通枢纽,对系统可靠性和安全性要求高,负荷密集、供电容量大,因此对能源管理系统也提出了相应的要求:
a 极高的安全性与可靠性。综合交通枢纽运营必将带来大量的人群聚集,为确保安全、对照明、通风等系
统的持续可靠运行提出了极高的要求。
b 长时间持续稳定运行。综合交通的功能要求站房设施必须能够确保长时间持续稳定运行,这就要求能源
管理系统能够稳定运行。
c 能源成本管控的要求。人性化设施水平和满足舒适的使用体验要求,必然带来很大的空调、照明通风能
耗,需要对能耗进行分类监测和统计,并针对实际客流变化进行合理调控,以降低整体运营成本。
d 降低整体设施运营管理强度的要求。对于成都东客站综合交通枢纽这样规模大、设施分布空间广、客流
密度高的综合交通设施,其日常运营的管理强度极大,仅仅靠传统的站场管理模式根本无法满足正常功能
和可靠性的保障的要求,必须借助现代自动化技术手段以提高管理效率。
e 适应发展提高管理水平的要求。中国高铁代表着世界领先的铁路设施水准,要求对应设施管理水平要有
相应的提升,以便充分发挥设施的功能。
要满足上述要求必须采用动态能源管理技术,对设施整体能源系统进行全面实时的监测管理,以提供设施运营管理工具和能源管理手段。
综合成都东客站铁路枢纽站的设施规模、建筑特点,以及上述要求,要实现对其能源系统进行全面管理的功能要求,能源管理系统技术方案应具有下述特点:
a 设施规模巨大对系统容量的特殊要求。成都东客站铁路枢纽站设施规模巨大,空间分布广,能源系统种
类较多,耗能设备分布区域广且复杂,所以本项目能源管理系统涉及的能耗与能效参数检测点数量极大,
导致系统总容量要求大大超过一般系统规模,对系统实时数据库和历史数据库的规模和设计也提出了特殊
要求。
b 空间分布广对通信网络的要求。能耗与能效参数采集点量多且面广,大量数据由配电链路末端传送到系
统后台,要求网络有足够的通信宽带,保证各分区分类能耗数据的实时传输和存储,实现数据同步及互操
作。因此系统通信网络必须具有很高的可靠性和可扩展性。
c 多能源系统对系统开发性和可扩展性的要求。成都东客站综合交通枢纽的多能源系统要求其能源管理系
统具有足够的开放性,具备与其他系统集成的兼容和开放的接口与数据库,便于与其他系统对接,实现数
据共享。
d 能耗负载复杂性对检测设备适应性的要求。高铁枢纽内部负载设备复杂多样,要求能耗与能效监测设备
足够的鲁棒性和可靠性,能适应恶劣环境要求,要求在电压、电流波形严重畸变的情况下也能够快速准确
采集数据。
解决方案
3.1 概述
综合上述需求分析,结合成都东客站铁路枢纽站的建筑特点,本项目选用全时动态能源管理技术进行项目设计。整体架构采用分层分布式结构,由中央监控室主站系统、主干通信网络与测控层数据网络以及底层能耗与能效监测设备等部分组成。
3.2 系统架构
系统拓扑图如图2所示,自上而下包括系统层、数据网络层和测控层。
系统拓扑图
如图所示:现场中的IO 设备的通讯线缆采用RVSP 2*1.5屏蔽双绞线连接现场智能装置的RS485通讯接口,每根总线连接仪表的最大数量为32台。在现场6间弱电机房内设有通讯采集箱,动力柜和墙柜内的智能装置连接至附近的通讯采集箱内,然后通过光纤上传至中控室内,在后台监控主机对上传的数据进行集中采集处理。
3.2.1 能源管理系统主站
设备列表如表格1所示:
在成都东客站中央监控室,设置系统服务器(主/备双机系统),系统控制计算机采用windowsXP 操作系统,应用软件采用系统专用组态软件,实现正常的监测数据和远程配电设备状态的集中呈现、事故过程记录与分析、开关操作、数据存储、数据的统计分析处理、多系统间的数据共享、事故报警等功能;配置激光打印机一台,可打印软件产生的各种图形、画面、报表、事故报告、负荷曲线等;配置UPS 不间断电源设备一台,可应对电网供电中断的紧急情况,避免系统数据的丢失;系统主站通过光纤以太网络同下位设备连接。
3.2.2 主干数据通信网络
设备列表如表格2所示:
主干网络采用环形拓扑结构,由6芯或6芯以上的单模光纤实现主站与子站之间的数据的传输。使用光纤收发器实现光信号与电信号的转换。
3.2.3 测控层数据总线网络
由RVSP 2*1.5(屏蔽双绞线)将底层能耗与能效监测单元与分布式通信子站连接,形成能源测控层总线网络,传输负载设备能耗与能效实时数据。
3.2.4 测控层硬件设备(见图4)
分布于能源系统底层各处负载设备,实现负载设备能耗与能效监测,主要包括:智能电力能耗与能效监测单元,保证环境多适应性和大量数据的实时采集、监视,具备总线通信功能。
设备名称:PZ80L-E4/K
现场设备层仪表技术参数
■为标配,□为选配