摘要 由于传统硅酸盐水泥基建材的生产和使用过程排放大量的二氧化碳,近几年以地质聚合物为代表的新型低碳胶凝材料成为研究热点。作为我国的大宗工业固体废弃物,粉煤灰富含硅铝酸盐,通过碱激发制备地质聚合物,可实现粉煤灰的大宗消纳。本文综合论述了粉煤灰的碱激发反应活性及活性组分含量评估方法,总结了粉煤灰碱激发反应机理,归纳了粉煤灰类型、激发剂、原料配比和养护制度等关键因素对地聚物形成和性能的影响规律,提出了目前研究存在的一些问题,并从粉煤灰活性组分计算和碱激发体系元素组成的角度,对未来需要进一步研究的内容进行了展望,以期能够深化对粉煤灰碱激发反应机理及地聚物形成历程的认识,为粉煤灰基地聚物合成的下一步研究和产业化发展提供借鉴。
由于传统硅酸盐水泥基建材的生产和使用过程排放大量的二氧化碳,近几年以地质聚合物为代表的新型低碳胶凝材料成为研究热点。作为我国的大宗工业固体废弃物,粉煤灰富含硅铝酸盐,通过碱激发制备地质聚合物,可实现粉煤灰的大宗消纳。本文综合论述了粉煤灰的碱激发反应活性及活性组分含量评估方法,总结了粉煤灰碱激发反应机理,归纳了粉煤灰类型、激发剂、原料配比和养护制度等关键因素对地聚物形成和性能的影响规律,提出了目前研究存在的一些问题,并从粉煤灰活性组分计算和碱激发体系元素组成的角度,对未来需要进一步研究的内容进行了展望,以期能够深化对粉煤灰碱激发反应机理及地聚物形成历程的认识,为粉煤灰基地聚物合成的下一步研究和产业化发展提供借鉴。
随着工业的不断发展,硅酸盐水泥作为粘结剂在建筑行业应用广泛,世界各国对硅酸盐水泥的需求量也越来越大。据统计,2020年我国硅酸盐水泥产量达23.95亿吨[1]。每生产1吨水泥排放二氧化碳(CO2)约810kg[2],水泥生产过程所排放的CO2占全球CO2排放量的5%~8%,被评为世界第三大CO2排放源[3,4]。因此,开发替代硅酸盐水泥的新型胶凝材料对建材行业的绿色低碳发展意义重大。
地质聚合物(简称地聚物)被认为是最具潜力替代水泥基建材的新型材料之一,其具有生产能耗和CO2排放量低、耐高温、耐腐蚀及力学强度高等优点[5-8]。地聚物这一概念最早是由法国材料学家Joseph Davidovits提出[9],它是由硅铝质无机原料通过矿物聚缩而生成的一种由[AlO4]和[SiO4]四面体结构单元组成三维网状结构的无机聚合物[10],化学式为Mn{(SiO2)zAlO2}n·wH2O。聚合过程主要通过硅铝质原料与碱发生化学反应生成起胶结作用的无定形凝胶,凝胶脱水硬化后形成具有网络结构的地聚物,因此含硅铝原料和激发剂成为地质聚合过程的两大必要条件。地聚物的原料来源广泛,包括偏高岭土、粉煤灰、硅灰、矿渣、稻壳灰和赤泥等。碱激发是利用粉煤灰合成地质聚合物常用的方法,常用的碱激发剂有:氢氧化钠、氢氧化钾、硅酸钠、硅酸钾及其混合溶液等[11]。
目前,燃煤火力发电仍然是我国主要的电力生产方式,在煤炭燃烧过程中会排放出大量的粉煤灰,2024年我国粉煤灰年排放量预计达到9.25亿吨[12],无法全部利用消纳,每年仍有大量的粉煤灰堆存,严重地威胁当地的生态环境和人体健康。粉煤灰中富含硅铝酸盐,以粉煤灰为原料通过碱激发制备地聚物是目前的研究热点和重要的发展方向,粉煤灰基地聚物若能替代传统水泥基建筑材料,将会大幅降低建材领域的CO2排放,助力实现双碳目标。碱激发粉煤灰制备地聚物时,粉煤灰活性组分含量、碱激发剂种类及配比和养护制度等是地聚物性能的关键影响因素,这些因素通过影响关键产物无定形凝胶的种类、结构和生成量,进而影响产品性能。因此,本文总结了粉煤灰活性组分含量和碱激发反应活性的评估方法,归纳了粉煤灰碱激发反应机理,论述了粉煤灰种类、激发剂、原料配比和养护制度等关键因素对地聚物形成及性能的影响,并对粉煤灰碱激发制备地聚物的未来发展进行了展望,以期能够深化对粉煤灰碱激发反应机理及地聚物形成历程的认识,为粉煤灰基地聚物合成的下一步研究和产业化发展提供借鉴。
粉煤灰是煤燃烧后生成飞灰和底渣的统称,由于煤中无机组分和锅炉燃烧工况的差异,造成粉煤灰的理化特性差异较大。总体来说,粉煤灰的化学组成主要为SiO2和Al2O3,两者含量可达60%~90%;其次含有部分CaO和Fe2O3,还有少量的TiO2、P2O5、MgO、SO3、K2O和Na2O。粉煤灰中SiO2、Al2O3和CaO是参与地质聚合反应的主要组分,SiO2和Al2O3在碱的作用下逐渐溶解形成[SiO4]和[AlO4]单体,单体之间相互聚合生成水化硅铝酸钠(N-A-S-H)、水化硅酸钠(N-S-H)和水化铝酸钠(N-A-H)等无定形凝胶,含钙活性组分在碱性条件下转化为水化硅酸钙(C-S-H)、水化铝酸钙(C-A-H)和水化硅铝酸钙(C-A-S-H)无定形凝胶,这些凝胶将未完全反应的惰性颗粒粘结,最终脱水硬化形成致密结构的地聚物材料。在该过程中生成的凝胶越多,样品的力学性能通常就越高[13]。
粉煤灰中硅铝酸盐和碱反应产生胶凝物质的这种性质称为火山灰活性。Singh等[14]研究发现,并不是粉煤灰中所有的硅和铝都能够参与凝胶的生成,能够被碱溶出并参与凝胶生成的这部分硅铝通常称为活性硅铝,粉煤灰中活性硅铝的含量对地聚物的力学强度有重要的影响。粉煤灰活性硅铝的含量与其物相组成有密切的关系。对于传统的煤粉炉(PC)粉煤灰来说,物相组成主要为:莫来石、刚玉和玻璃相,莫来石和刚玉等晶体结构非常稳定,难以参与碱激发反应[15],因此PC粉煤灰的活性硅铝主要来自玻璃相。对于循环流化床(CFB)粉煤灰来说,物相组成主要为:石英、硬石膏、赤铁矿和无定形硅铝酸盐[16],CFB粉煤灰的活性硅铝主要来自无定形硅铝酸盐。准确评估粉煤灰活性硅铝的含量,对指导地聚物合成时的原料配比非常重要。已有国内外学者在该方面进行了研究,总体来说,目前评估粉煤灰活性组分含量或反应活性的方法主要有:Rietveld全谱图拟合法、饱和石灰溶液吸收法和酸碱溶出法。
Rietveld全谱图拟合法是计算粉煤灰玻璃相含量的一种方法,该方法可定量计算灰中晶体矿物质和玻璃相的含量,结合灰中总化学组成和晶体矿物质的化学组成,利用差减法获得玻璃相的化学组成[17]。Singh等[14,18]利用Rietveld全谱图拟合法计算粉煤灰活性硅铝的含量,结果发现活性硅铝含量低于化学组成中硅铝含量,且活性硅铝的含量决定了地聚物抗压强度的高低,粉煤灰中活性Al2O3含量决定了地聚物可达到的最大极限抗压强度值;通过Rietveld全谱图拟合法不仅能够计算玻璃相的含量和化学组成,还能够对反应生成的无定形凝胶进行定量。Deborah Glosser等[19]认为该方法有潜力替代现有的量热法,来评估粉煤灰的火山灰反应活性,其研究发现粉煤灰的反应活性随玻璃相含量的增加而提高。
饱和石灰溶液吸收法是将粉煤灰与硅酸盐水泥浆或饱和石灰溶液混合,利用粉煤灰与Ca(OH)2发生反应的原理,通过测定不同龄期溶液中反应剩余的Ca2+和OH-浓度来评估粉煤灰的反应活性。溶液中剩余的Ca2+和OH-浓度越低,即未反应Ca(OH)2的量越低,粉煤灰的反应活性越好[20-22]。Li等[23]通过饱和石灰溶液吸收法测定不同龄期溶液中反应剩余的Ca2+,并利用剩余Ca2+的浓度来计算化学活性指数A,如公式(1)所示:
式中,C[Ca2+]表示溶液中的残余Ca2+浓度,C0[Ca2+]表示溶液中的初始Ca2+浓度。通过化学活性指数的大小能够评估粉煤灰的反应活性,粉煤灰的化学活性指数越高,所制备地聚物的抗压强度则越高。McCarthy等[24]利用石灰消耗试验即饱和石灰溶液吸收法来评估粉煤灰的反应性,结果发现氧化钙消耗量和粉煤灰的细度之间有很强的相关性。Donatello等[22]比较了评估火山灰活性的几种方法,发现饱和石灰溶液吸收法存在如下缺点,即由于所测试样品的差异性,使得每个样品中Ca(OH)2的含量存在不确定性,这会使得测试结果存在较大误差,因此使用该法时应避免额外钙的引入。
酸碱溶出法则是利用玻璃相组分与酸碱反应的原理,通过测定浸出液硅铝的浓度来计算玻璃相或活性组分的含量。Carsten Kuenzel等[25]研究了煤粉炉粉煤灰在NaOH溶液搅拌条件下的溶解过程,利用8~16 mol/L的NaOH溶液处理粉煤灰,测定溶液中硅、铝离子的浓度,从而评估粉煤灰中活性组分的含量,结果显示粉煤灰颗粒分为活性组分、部分活性组分和惰性组分,活性组分在碱激发过程中快速溶解,部分活性组分颗粒外面的无定形硅逐渐溶解,惰性组分不参与反应。刘鑫等[26]通过碱-酸联合溶出法测定硅铝的浸出量来评估粉煤灰的碱激发反应活性,先利用模数为1.5的水玻璃溶液对粉煤灰进行碱溶,破坏粉煤灰的玻璃体结构,再利用酸溶液对碱溶后的滤渣进行处理,使碱溶过程中生成且附着在碱浸渣颗粒表面的凝胶重新溶解,从而获得粉煤灰在碱激发过程硅铝的溶出量,结果显示粉煤灰浸出硅铝含量与地聚物的抗压强度呈正相关。Krishnan等[27]利用类似的方法处理粉煤灰,先利用NaOH溶液处理粉煤灰,再用HCl溶液对碱浸渣进行处理,获得粉煤灰碱处理过程硅和铝的实际溶出量,并与Rietveld全谱图拟合法计算的无定形含量对比,发现利用酸碱浸出法所得粉煤灰总活性含量(67.8%)接近Rietveld全谱图拟合法计算得到的无定形含量(66.28%)。Li等[28]分别利用Rietveld全谱图拟合法、氢氟酸溶解和NaOH溶液碱溶等方法分析粉煤灰玻璃相的含量,结果显示,通过Rietveld全谱图拟合法计算得到的玻璃相含量为72.6%,利用氢氟酸溶解得到的可溶相含量为72.3%,这两种方法所得结果基本一致;然而,利用NaOH溶液处理粉煤灰,溶解得到的硅铝含量显著低于HF溶液处理的结果,由此可推断,粉煤灰中或许只有一小部分玻璃相参与了地质聚合过程。
综上所述,粉煤灰活性组分含量和碱激发反应活性评价方法主要包括拟合计算法和化学溶解法,拟合计算法是利用Rietveld全谱图拟合法计算粉煤灰中无定形组分的含量;化学溶解法则是利用碱溶液或酸溶液处理粉煤灰,通过计算粉煤灰组分的溶出率来评估粉煤灰活性组分含量,主要包括饱和石灰溶液吸收法和酸碱联合浸出法。石灰溶液吸收法虽然测定简单,但在测试过程中不能引入额外的钙,因此对粉煤灰化学组成的要求比较严格,而酸碱联合溶出法对原料的要求不高,更具有普适性。
粉煤灰的化学组成包括SiO2、Al2O3、Fe2O3、CaO和MgO等,其中SiO2、Al2O3和Fe2O3属于酸性氧化物,CaO和MgO属于碱性氧化物,在碱性环境下,其发生的化学反应及对应的吉布斯自由能如下[29]:
由式(2)~(7)可以看出,这6个化学方程式的摩尔吉布斯自由能变化均小于0,说明粉煤灰与碱的反应能够自发进行。Fernández等人[30]通过扫描电镜(SEM)和透射电镜(TEM)等手段观察碱激发反应不同阶段的颗粒形貌,提出了粉煤灰碱激发反应的过程(如图1所示),在早期阶段,碱溶解了球体的部分外壳,使被困在较大颗粒中的小颗粒暴露在碱性环境中,随着反应的进行,碱液逐渐进入玻璃体内部,活性玻璃体相在内外双向碱液的侵蚀作用下发生溶解,形成离子态单体在碱液中扩散,进一步发生凝胶化反应。然而,生成的凝胶体会沉积在玻璃体相的表面而形成包裹层,会阻碍反应的继续进行。
Zhuang等人[31]提出了粉煤灰碱激发反应机理,如图2所示,粉煤灰碱激发反应过程经历以下四个阶段:解构—重构—凝聚—聚合,首先粉煤灰中的活性硅铝在碱性条件下溶出形成含硅和铝的活性单体,活性单体结合形成低聚态凝胶,低聚体之间相互结合形成具有三维网络结构的高聚态凝胶,最后凝胶逐步硬化,形成地聚物[32]。具体反应过程如下[29,31]:当碱与粉煤灰颗粒接触后,OH-与粉煤灰颗粒表面的硅铝酸盐发生反应,硅铝酸盐中的-Si-O-Si-或-Si-O-Al-发生断裂,释放出Si4+和Al3+等活性离子,同时形成不同的络合物,如[Al(OH)4]-、[Al(OH)6]3-、[SiO(OH)3]-、[SiO(OH)2]2-和[SiO3(OH)]3-。这些物质并不稳定,相互之间会进一步发生反应,形成低聚态的凝胶。
硅铝酸盐低聚体中硅铝的结合形态取决于进入溶液的硅铝比(Si/Al),如图3所示,当Si/Al=时,呈单硅铝长链PS型;当Si/Al=2时,呈双硅铝长链PSS型;当Si/Al=3时,呈三硅铝长链PSDS型;当Si/Al>3时,呈多硅铝网状结构Sialatelink型[33]。由于[Al(OH)4]-具有高活性,硅酸盐和铝酸盐物种之间更容易发生缩聚,反应如下:
式(8)描述的反应倾向于形成二聚体和三聚体,而式(9)描述的反应倾向于形成多聚体。上述反应中硅酸盐与铝酸盐之间通过两个羟基脱水缩合形成硅铝酸盐结构,这种类型的缩聚反应通常是亲核取代反应,Na+或K+用于平衡上式中的负电荷,最终形成N(K)-A-S-H凝胶。
N-A-S-H凝胶结构与[SiO4]和[AlO4]四面体构成无定形到半结晶的三维网络有关。三维网络的聚合度通常由Si(Qn(mAl))表示,Qn代表一个硅氧四面体与n个硅氧四面体相结合,0≤n≤4;Qn(mAl)表示一个硅氧四面体与n个四面体结合,其中有m个铝氧四面体,有(n-m)个硅氧四面体[34]。在地聚物中,硅铝配位结构主要有Q4(4Al)、Q4(3Al)、Q4(2Al)、Q4(1Al)和Q4(0Al),对应核磁共振化学位移的范围分别为-83~-87、-88~-93、-94~-98、-99~-104和-107~-111[35]。梁鼎成等人[36]研究了CFB粉煤灰碱激发制备地聚物的反应历程,如图4所示,发现在地聚物形成过程中,反应初期以Q4结构为主,随着反应的进行,逐渐形成Q4(2Al)以及Q4(1Al)结构,这表明体系中的铝逐渐进入凝胶结构;反应后期,Q4(1Al)逐步向Q4(3Al)转变,铝进入到地聚物的骨架中,形成以Si-O-Al结构为主的凝胶。Nikoli?等人[37]分析了粉煤灰基地聚物抗压强度及29Si MAS NMR光谱中Q4(mAl)单元比例之间的关系,发现无论养护温度为55℃还是95℃,随着养护时间由4h增加到24h,产物中的富铝结构单元比例逐渐增加,有利于抗压强度的提升。
3.1 粉煤灰种类
根据美国材料与试验协会ASTMC618-19标准,根据氧化钙(CaO)含量的差异,粉煤灰可分为F类和C类。F类粉煤灰的CaO含量低于18%,CaO含量大于18%的为C类粉煤灰。对于C类粉煤灰来说,钙含量对地聚物的形成过程有很大的影响,钙离子的加入有助于形成更复杂的含钙地聚物[38]。随着原料中钙含量的变化,所形成地聚物的凝胶种类也有所不同,其产物可能是含钙的水化硅铝酸钠凝胶(C,N-A-S-H),可能是水化硅铝酸钠(N-A-S-H)和水化硅铝酸钙(C-A-S-H)凝胶共存,也可能为水化硅酸钙(C-S-H)和水化硅铝酸钠(N-A-S-H)凝胶共存的凝胶体系[39,40]。较高的钙含量有利于C-A-S-H凝胶的形成,对地聚物抗压强度的影响较大[41]。Temuujin等人[42]的研究表明,当粉煤灰中分别添加3%的CaO和Ca(OH)2时,能够促进C-S-H和C-A-S-H的形成,7天抗压强度从11.8MPa分别提高到22.8MPa和29.2MPa。Chen等人[43]研究了钙含量对粉煤灰基地聚物性能的影响,结果显示,一方面,CaO含量的增加有利于钙矾石的形成,提高了早期强度;另一方面,CaO促进了玻璃相的溶解和无定形凝胶的形成。然而,当原料中的钙含量过高时,反应产物以C-S-H为主,会降低产品强度。Zhao等人[44]以两种F类粉煤灰为原料,通过添加不同含量的Ca(OH)2来研究钙含量对地聚物强度的影响,随着Ca(OH)2含量的增加,地聚物抗压强度呈先增加后降低的趋势,当(Na+K+Ca)/Al<0.95时,主要生成(C,N)-AS-H凝胶,有利于强度的提升;当(Na+K+Ca)/Al>0.95时,C-S-H和N-A-S-H凝胶共存,此时抗压强度有所降低。
根据燃烧炉型的不同,粉煤灰可以分为煤粉炉粉煤灰(PC灰)和循环流化床粉煤灰(CFB灰)。由于燃烧工况的差异,两种粉煤灰在物相组成、微观形貌、化学组成和反应活性等方面存在较大区别,粉煤灰的这些性质会直接影响碱激发过程中凝胶的生成和产品的性能。
PC灰是动力煤粉在1300~1500℃燃烧形成的,其微观形貌呈球形颗粒状,颗粒表面被玻璃体覆盖,颗粒的比表面积相对较大,通常情况下其碱激发反应活性较好。Rattanasak等人[45]以PC灰为原料,以NaOH-Na2SiO3混合溶液为激发剂制备地聚物。当养护温度为65℃、NaOH浓度为15mol/L且Na2SiO3/NaOH=1时可制备出28天抗压强度达70.0MPa的地质聚合物。Ati?等人[46]以PC灰为原料,以NaOH为激发剂制备地聚物,在Na含量14%、养护温度115℃和养护时间24h的条件下,所制备地聚物的1天抗压强度可达120MPa。Joseph等人[47]研究发现,当复合激发剂中Na2SiO3/NaOH为2.5,养护温度100℃养护24h后,PC灰基地聚物28天抗压强度达56MPa。Haq等人[48]同样以PC灰为原料,以NaOH-Na2SiO3混合溶液为激发剂制备地聚物,当样品在65℃下养护48h,所制备的地聚物7天抗压强度达60MPa。
CFB灰是煤矸石和煤泥等低热值煤在800℃~900℃下燃烧形成的,其微观形貌呈不规则块状[49-51],颗粒的平均粒径比PC灰稍大。由于CFB锅炉在运行过程中采用喷石灰石粉的方式进行炉内固硫,使得CFB灰中硫酸钙(CaSO4)的含量较高,还含有少量的未反应CaO[52],可能会对地聚物的后期强度造成不利影响[53]。韩复谦等人[54]发现石膏的加入会使试块中生成硫酸钠和钙矾石,可提高试块的早期强度,但后期钙矾石会使试块体积膨胀而导致裂缝产生,不利于后期强度的进一步提高。Kaya等人[55]研究表明,PC灰的碱激发反应活性远高于CFB灰。在养护温度90℃、养护360天时,PC灰所制备的地聚物达到最大抗压强度56.44MPa,而CFB灰在最佳条件(养护温度60℃,养护时间90天)下所制备地聚物的抗压强度仅为15MPa,前者的强度是后者的4倍左右。
PC灰的碱激发反应活性来自玻璃相,而CFB灰的碱激发反应活性来自于含钙组分和无定形硅铝酸盐。目前认为CFB灰的碱激发反应活性普遍低于PC灰。为提高CFB灰的碱激发反应活性,Xu等人[56]采用碱熔的方法破坏CFB灰无定形硅铝酸盐的稳定结构,促进硅铝组分的溶解,能够提高其碱激发反应活性。有学者[57,58]将CFB灰和PC灰混合碱激发制备地聚物,发现PC灰的加入有助于提高地聚物的强度。机械研磨也可以适当提高CFB灰的反应活性,Oyun-Erdene等人[59]研究显示,CFB灰经机械研磨后所制得地聚物强度是未经研磨CFB灰所制地聚物的2倍。机械研磨可以促进不规则大粒径颗粒的碎裂,减小颗粒粒径,提高颗粒的比表面积,从而提高反应活性。然而,并非所有CFB灰的碱激发反应活性均较低,Li等人[60]研究发现,其所利用CFB灰的碱激发反应活性较高,主要是由于该CFB灰中含有较多类似于偏高岭石的无定形结构,使得其碱激发反应活性较高。
普通粉煤灰在常温下与水基本不能发生反应,在激发剂的作用下才会具备胶凝性质。激发剂的作用是破坏原料稳定结构,促进活性组分的解聚和胶凝产物的生成。目前,合成地聚物的激发剂分为碱性激发剂、酸性激发剂和盐类激发剂。其中目前最常用的是碱性激发剂[61]。碱性激发剂主要包括氢氧化物(NaOH、KOH)、硅酸盐(Na2SiO3、K2SiO3)或两者的混合物[62]。
碱激发剂的阳离子种类对地聚物力学性能有很大影响。Abdul等人[63]以8mol/LNaOH溶液激发粉煤灰制备地聚物,在60℃下养护14天获得试块的最高抗压强度达65MPa,而使用相同浓度KOH溶液制备的地聚物14天最高抗压强度仅28MPa。Ketana等人[64]分别利用模数为2.0的Na2SiO3-NaOH混合溶液和K2SiO3-KOH混合溶液激发粉煤灰制备地聚物,试块的28天抗压强度分别为47.92和29.65MPa。Nematollahi等人[65]研究显示,利用模数为2.0的Na2SiO3-NaOH混合溶液激发粉煤灰所制备地聚物的抗压强度比以相同模数K2SiO3-KOH混合溶液为激发剂制备地聚物的抗压强度高70%左右。以上研究均表明Na2SiO3-NaOH混合溶液的激发效果优于K2SiO3-KOH混合溶液。Na+的离子半径比K+小,使得Na+更加活跃,促进粉煤灰硅铝酸盐的溶解,生成更多的[SiO4]和[AlO4]单体,提高凝胶的生成量,形成更加致密的结构,从而使地聚物获得较高的力学性能。
NaOH溶液和NaOH-Na2SiO3混合溶液是最常用的碱激发剂,NaOH溶液浓度和复合激发剂模数对地聚物力学性能具有重要的影响,本部分分别总结了两者对粉煤灰的激发效果及对地聚物合成的影响。
NaOH溶液激发粉煤灰的作用原理是OH-与粉煤灰中硅铝酸盐反应,使Si-O-Si和Si-O-Al键发生断裂,形成[SiO4]和[AlO4]单体,单体聚合形成凝胶和地聚物。因此,NaOH溶液的浓度和用量对硅铝酸盐分解、凝胶生成和地聚物强度的发育具有重要的影响。有研究表明地聚物的强度随着NaOH溶液浓度的增加呈上升趋势,Wong等人[66]研究发现,增加NaOH溶液的浓度,可提高粉煤灰中硅铝的溶出率。Chen等人[67]以超细粉煤灰为原料制备地聚物,研究了NaOH浓度对地聚物性能的影响,当NaOH浓度为4~12mol/L时,试块抗压强度随着NaOH浓度的增加而逐渐增大。由试块的SEM图片(图5)可知,当NaOH浓度为4mol/L时,粉煤灰地质聚合反应缓慢,只有少量无定形凝胶生成,不足以填充颗粒之间的孔隙,导致试块结构松散和强度较低。随着NaOH溶液浓度的增加,粉煤灰的球形颗粒逐渐减少直至消失,大量凝胶的生成使得试块结构致密,形成了较高的抗压强度。较高的NaOH浓度,促进了粉煤灰玻璃相的分解和凝胶的生成,提高了试块的力学性能。
然而,并不是NaOH浓度越高,所制备地聚物的强度越高,当NaOH浓度超过一定限度时会导致试块的力学性能下降[61]。Pavithra等人[68]研究发现,随着NaOH浓度的增加,试块抗压强度先升高后降低,当NaOH浓度为16mol/L时,试块抗压强度最大约50MPa。Abdullah等[69]也得到了类似的结果,随着NaOH浓度由6mol/L增加至16mol/L时,试块的抗压强度先升高后降低,当NaOH浓度为12mol/L时,试块的抗压强度最高。当NaOH浓度过高时,体系中OH-的浓度较高,反应初期容易生成较多的凝胶,凝胶快速沉淀硬化,会阻碍原料中硅铝酸盐的进一步溶出;而且,在较高的NaOH浓度下,一部分无定形凝胶随着养护时间的延长会向晶体转变;这些因素均不利于地聚物的强度发育,从而表现出抗压强度下降。
相比于单一NaOH溶液,复合激发剂中Na2SiO3的加入补充了体系中活性硅的浓度,加速凝胶的生成和地质聚合反应的进行,提高试块力学性能。Sasui等人[70]研究发现,NaOH溶液激发粉煤灰浆体的终凝时间为2.16h,而NaOH-Na2SiO3复合激发粉煤灰浆体的终凝时间缩短为1.92h,同时,NaOH-Na2SiO3激发粉煤灰所得地聚物的抗压强度高于单一NaOH溶液激发的地聚物。
复合激发剂的模数对地聚物的形成和强度发育影响较大。张雪芳等人[71]研究发现,随着激发剂模数从0.5提高到2.5时,地聚物的抗压强度呈先增加后降低的变化趋势,当模数为1.0时,抗压强度达到最大值。Marios等人[72]也得到了类似的结果,当模数较低时,Na2SiO3用量减少,体系中生成凝胶所需活性硅的量不足,使得凝胶生成量较低,试块抗压强度较低。而当模数过高时,体系中NaOH的浓度太低,使得粉煤灰硅铝酸盐的溶出量和凝胶的生成量降低,也会降低地聚物的力学性能。利用复合激发剂激发粉煤灰制备地聚物时,最佳模数并不是固定的,因粉煤灰组成和活性而异。
当采用不同的原料、水玻璃模数和碱掺量等条件制备地聚物时,所得最优的原料配比也不尽相同,无法得到统一的标准,造成这种差异的原因主要是原料的活性组分含量和反应活性不同。人们从原料和激发剂的化学组成入手,研究了混合体系Si/Al、Si/Na和Ca/Si等因素对地聚物合成的影响,得到了一些规律性认识[73]。
Si和Al是参与地质聚合反应的主要组分,原料中在碱性体系所溶出的Si/Al直接影响地聚物凝胶的结构类型,进而影响地聚物的强度发育[74]。研究表明,地聚物的抗压强度随着体系Si/Al的增加呈先升高后降低的变化趋势,由于粉煤灰活性组分含量的差异较大,因此所获得的最佳Si/Al存在较大差别[75-78]。Dehghani等人[76]研究了体系Si/Al(摩尔比,1.63、1.69、1.75、1.88)对粉煤灰基地聚物性能的影响,结果发现,随着Si/Al的增加,浆体的初凝和终凝时间缩短,地聚物抗压强度呈先增加后降低的变化趋势,当Si/Al为1.69时,试块的抗压强度达到最大值。Zhou等人[77]得出相似的结论,即随着Si/Al由1.0增加到3.0,地聚物的抗压强度呈先增加后降低的趋势。当Si/Al=2、养护温度为80℃时,7天抗压强度达到最大为26.45MPa。Wang等人[75]研究发现当体系的Si/Al为1.5时,地聚物获得最佳的抗压强度。
因此,Si/Al过高或过低都不利于地聚物强度的发育,合适的Si/Al可以形成长链无机聚合物,使得地聚物的网络结构更加稳定。
当利用NaOH-Na2SiO3复合激发剂激发粉煤灰时,Na2SiO3的引入补充了体系中活性硅的含量,影响了粉煤灰硅铝活性组分溶出与凝胶生成,因此,除Si/Al外,Si/Na对地聚物的生成和强度发育也有着明显的影响。Cho等人[79]研究了Si/Na(摩尔比,0.4、0.7和1.0)变化对地聚物抗压强度的影响,结果表明,随着Si/Na的增加,地聚物的抗压强度先增加后降低,对Si/Na分别为0.4、0.7和1.0的样品进行孔隙分析,发现试块中50~1000 nm的大孔体积分数分别为58.1%、21.4%和72.1%,当Si/Na=0.7时,试块中的大孔比例最少,因此获得最佳的抗压强度。Zhang等人[80]的研究得到了相似的结论,随着Si/Na(摩尔比)由0.55增加至0.8,地聚物抗压强度也呈先增加后降低的趋势,当Si/Na为0.6时得到最高抗压强度。低Si/Na下过量的Na2O会使反应速率过高,导致地聚凝胶快速硬化,阻碍进一步地质聚合。当Si/Na较高时,Na2O不足使得原料中硅铝的溶出速率降低,阻碍铝酸盐低聚物和硅酸盐交联的形成,从而使地聚物的强度下降。Ro?ek等人[35]研究了Si/Na(摩尔比,1.5、2、2.5)对地聚物性能的影响,结果表明抗压强度随着Si/Na的增加呈下降趋势,与前几位学者的研究对比发现,该研究中选取的Si/Na数值较大,这可能是引起强度仅有下降阶段而没有提高阶段的原因。通过对不同Si/Na样品进行29Si MAS NMR分析(图6),发现随着Si/Na增加,产物中富铝凝胶Q4(4Al)和Q4(3Al)的比例逐渐下降,而富铝凝胶结构单元具有更高的交联性,对强度的贡献较大。
CFB灰和C类PC灰含有较高含量的钙,对地聚物的形成有一定的影响,本节总结了体系Ca/Si对地聚物性能的影响。Huseien等人[81]研究发现,Ca/Si为1.41的砂浆强度高于Ca/Si为1.08的砂浆强度,说明适当提高钙含量可提高地聚物的强度,在该体系下C-S-H、C-A-S-H和N-A-S-H凝胶在产物中共存。U?urlu等人[82]研究了体系Ca/Si和地聚物抗压强度的相关性,结果如图7(a)所示,体系Ca/Si与地聚物抗压强度的相关系数达0.97,表明Ca/Si与抗压强度之间有显著的相关性,随着体系Ca/Si的增加,产品抗压强度逐渐增加。Shi等人[83]通过将磨碎粒状高炉渣和粉煤灰按一定的比例混合来调整体系的Ca/Si,结果如图7(b)所示,地聚物抗压强度与体系Ca/Si呈正相关(R2=0.75),体系CaO含量的增加有助于提高凝胶的生成速率和生成量,C-A-S-H凝胶的聚合度受Ca/Si比的影响。Charoenchai等人[84]将高钙粉煤灰加入到低钙粉煤灰以调整原料的Ca/Si(0.07、0.15、0.25、0.37和0.51),利用NaOH-Na2SiO3复合激发剂制备地聚物,结果显示,随着体系Ca/Si的增加,地聚物的初凝和终凝时间大大降低,而试块的抗压强度呈先升高后降低的趋势,在Ca/Si为0.15时得到最佳抗压强度,钙组分虽然能够促进浆体的凝结,但过多的钙可能使得浆体凝结过快,阻碍凝胶的进一步生成,导致试块的抗压强度下降。
在地聚物形成过程中,养护温度对无定形凝胶的生成和聚合硬化速率有重要影响,进而影响地聚物力学性能。Zhou等人[77]研究表明,随着养护温度从20℃升高到80℃,地聚物的抗压强度逐渐提高。Ling等人[85]研究发现,提高养护温度对地聚物强度发育的影响较大,尤其是在早期,碱激发粉煤灰浆体在50℃养护1天时的强度是23℃养护1天强度的10倍左右。在室温下,粉煤灰硅铝组分的溶出、无定形凝胶的生成和聚合等反应速率较低,使得地聚物早期强度较低;而在50℃养护时,反应速率提高,加速了地质聚合反应,从而提高了地聚物的早期强度。然而,地聚物的强度并非随着温度的升高而持续增加。Li等[60]利用NaOH-Na2SiO3复合激发剂激发CFB粉煤灰制备地聚物,当养护温度由室温提高到60℃时,可以显著提高地聚物的1~7天早期强度,但其28天以后的强度会明显降低。当养护温度为20℃时,地聚物中Q4(4Al)和Q4(3Al)结构的含量随着养护龄期的延长而逐渐增加,而Q4(2Al)和Q4(1Al)结构的比例呈下降趋势,从58.2%下降到37.2%,这说明富铝凝胶的生成有利于提高地聚物的强度。
然而,当养护温度为60℃时,试块中Q4(4Al)和Q4(3Al)结构的含量随着养护时间的延长而逐渐减少,一部分无定形凝胶转变为Q4(2Al)结构和呈棒状规则形貌的类沸石晶体,导致地聚物试块28天强度降低。
在地聚物的制备过程中,养护湿度对地聚物的微观结构和强度发育起着重要的作用[86,87]。Oderji等人[88]研究发现,当养护温度为70℃时,随着相对湿度由30%增加到90%,地聚物的抗压强度呈现先增加后降低的趋势,相对湿度为70%时得到最佳抗压强度33MPa。通过扫描电镜分析可知,当相对湿度为90%时,观察到试块中出现多孔结构以及大的裂纹,这可能是导致强度下降的原因。Garc等人[89]认为过高的相对湿度会促进地聚物从大气中吸收CO2,加速地聚物的碳酸化,从而对其抗压强度产生负面影响。Shen等人[90]得到了相似的结果,即高养护湿度(RH:85%或95%)不利于强度的发展,其会减少化学结合水,阻碍富铝结构单元(Q4(3Al)和Q4(4Al))的形成,不利于强度的发育。与养护温度相比,养护湿度对地聚物力学性能的影响相对较小。
(1)在碱激发过程中,粉煤灰中仅有一部分组分参与胶凝反应。PC粉煤灰活性组分来自玻璃相的一部分硅铝酸盐,CFB粉煤灰除一部分无定形硅铝酸盐为活性组分外,还包含硬石膏和少量氧化钙。粉煤灰中活性硅铝含量的评估方法包括Rietveld全谱图拟合法、饱和石灰溶液吸收法以及酸碱溶出法,这些方法能够揭示粉煤灰玻璃相或无定形硅铝酸盐的含量以及活性硅铝酸盐在不同溶液体系的溶出行为。然而,由于粉煤灰碱激发产物主要为无定形凝胶,难以鉴别和准确定量,使得粉煤灰活性组分含量的评估很难与地聚物形成的实际过程结合。因此,基于地聚物形成过程的粉煤灰活性组分含量评估值得进一步深入研究。
(2)粉煤灰碱激发反应历程为:激发剂中的OH-破坏粉煤灰硅铝酸盐的-Si-O-Si-或-Si-O-Al-结构,部分硅铝逐渐溶出形成含硅和铝的活性单体;活性单体反应形成低聚态凝胶;低聚体之间继续反应形成具有三维网络结构的高聚态凝胶,最后凝胶逐步失水硬化,形成地聚物。粉煤灰碱激发体系的活性Si/Al对凝胶结构和地聚物力学性能影响较大,富硅凝胶结构(Q4(0~2Al))和富铝凝胶结构(Q4(3~4Al))对不同龄期地聚物强度的贡献不同,但两者对地聚物强度的影响规律尚未有统一和深入的认识,未来应加强凝胶结构和地聚物性能关联方面的研究。
(3)粉煤灰类型、激发剂、原料配比和养护制度是粉煤灰基地聚物形成和强度发育的关键影响因素。对于CFB粉煤灰来说,由于硬石膏和活性钙的存在,反应初期会形成C-A-S-H凝胶,有助于早期强度的提高,当原料中活性钙含量过高时,会生成钙矾石或其他晶体矿物,降低后期强度。NaOH-Na2SiO3复合激发剂对粉煤灰的激发效果较好,NaOH破坏硅铝酸盐结构,促进硅铝的溶出和凝胶的生成,Na2SiO3提高体系的活性硅含量,加速凝胶的聚合。地聚物的抗压强度随体系Si/Al、Si/Na和Ca/Si的增加呈现先升高后降低的变化趋势。适当提高养护温度,会缩短浆体的凝结时间和提高地聚物的早期强度,当养护温度过高时,不利于后期强度的发育。过高的养护湿度不利于地聚物强度的发育。碱激发粉煤灰体系关键产物无定形凝胶的生成速率和硬化速率相匹配,才能提高地聚物的力学性能。目前关于原料配比对地聚物性能影响的研究,大多基于粉煤灰总化学组成和激发剂化学组成,由于粉煤灰活性组分含量的差异,导致获得的变化规律不一致,给粉煤灰碱激发反应机理和地聚物合成研究带来困难,未来应针对不同类别粉煤灰的理化特性,建立碱激发体系各元素配比统一的计算方法,以便总结粉煤灰活性组分碱激发过程的反应规律,为粉煤灰基地聚物合成时统一设计标准奠定理论基础。
转自: 粉煤灰产业联盟 作者:孙浩,马志斌,路广军,刘晋艳,廖洪强 。