基本原理: A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
基本原理:
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
工艺优点:
(1)效率高。 该工艺对废水中的有机物,氨氮等均有较高的去除效果。 当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。
(2)流程简单,投资省,操作费用低。 该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。 尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。
(3)缺氧反硝化过程对污染物具有较高的降解效率。 如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。
(4)容积负荷高。 由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。
(5)缺氧/好氧工艺的耐负荷冲击能力强。 当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。 通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。 结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。
工艺缺点:
(1)由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;
(2)若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。 另外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。
(3)影响因素: 水力停留时间 (硝化>6h ,反硝化<2h )污泥浓度MLSS(>3000mg/L)污泥龄( >30d )N/MLSS负荷率(<0.03 )进水总氮浓度( <30mg/L)
常见设计参数:
A/O工艺设计参数
①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3
②污泥回流比:50~100%
③混合液回流比:300~400%
④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N
⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d
⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d
⑦混合液浓度x=3000~4000mg/L(MLSS)
⑧溶解氧:A段DO<0.2~0.5mg/L
O段DO>2~4mg/L
⑨pH值:A段pH =6.5~7.5
O段pH =7.0~8.0
⑩水温:硝化20~30℃
反硝化20~30℃
?碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)
?需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nr
a’─平均转化1Kg的BOD的需氧量KgO2/KgBOD
b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
上式也可变换为:
Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr
Sr─所去除BOD的量(Kg)
Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·d
Ro/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD
由此可用以上两方程运用图解法求得a’ b’
Nr—被硝化的氨量kd/d
4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2)
几种类型污水的a’ b’值
?供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。
i . 理论供氧量
1.温度的影响
KLa(θ)=KL(20)×1.024Q-20 θ─实际温度
2.分压力对Cs的影响(ρ压力修正系数)
ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值
3.水深对Cs的影响
Csm=Cs/2·(Pb/0.1013+Qt/21)
Csm─曝气池中氧的平均饱和浓度(mg/L)
Pb─曝气设备装设深度(Hm)处绝对气压(Mpa)
Pb=Po+9.81×10-3H Po─当地大气压力(Mpa)
Qt=21·(1-EA)/[79+21·(1-EA)]??
EA─扩散器的转移效率
Qt ─空气离开池子时含氧百分浓度
综上所述,污水中氧的转移速率方程总修正为:
dc/dt=αKLa(20)(βρCsmθ-Cl×1.024θ-20
{理论推出氧的转移速率dc/dt=αKLa(βCs-Cl)}
在需氧确定之后,取一定安全系数得到实际需氧量Ra
Ro=RaCsm(20)/α(βρCsm(θ)-CL)×1.024θ-20
则所需供气量为:
q=(Ro/0.3EA)×100m3/h
CL─混合液溶解氧浓度,约为2~3(mg/L)
Ra─实际需氧量KgO2/h
Ro─标准状态需氧量KgO2/h
在标准状态需氧量确定之后,根据不同设备厂家的曝气机样本和手册,计算出总能耗。总能耗确定之后,就可以确定曝气设备的数量和规格型号。
ⅱ.实际曝气池中氧转移量的计算
①经验数据法 当曝气池水深为2.5~3.5m时,供气量为:
采用穿孔管曝气,去除1KgBOD5的供气量80~140m3/KgBOD5
扩散板曝气,去除1KgBOD5供气量40~70m3空气/KgBOD5
②空气利用率计算法
每m3空气中含氧209.4升
1大气压(101.325Kpa),0℃ 1m3空气重1249克含氧300克
1大气压(101.325Kpa),20℃ 1m3空气重1221克含氧280克
按去除1Kg的BOD5需氧1Kg计算,需空气量分别为3.33和3.57m3,曝气时氧的利用率一般5~10%(穿孔管取值低,扩散板取值高),假定试验在20℃进行:
若氧利用率为5%,去除1Kg的BOD5需供空气72m3
若氧利用率为10%,去除1Kg的BOD5需供空气36m3
算出了总的空气供气量,就可根据设备厂家提供的机样选择曝气设备的规格型号和所需台数。