离心压缩机工作原理与喘振的原因
+关注
只看楼主
离心式压缩机一般是由电动机通过齿轮增速带动转子旋转。蒸发器出来的制冷剂蒸气经吸气室进入叶轮。叶轮高速旋转,叶轮上的叶片即驱动气体运动,并产生一定的离心力,将气体自叶轮中心向外周抛出。气体经过这一运动,速度增大,压力得以提高。显然,这是作用在叶轮上的机械能转化的结果。
气体离开叶轮进入扩压器,由于扩压器通道面积逐渐增大,又使气体减速而增压,将其动能转变为压力能。为了使制冷剂蒸气继续提高压力,则利用弯道和回流器再将气体引入下一级叶轮,并重复上述压缩过程。被压缩的制冷蒸气从最后一级扩压器流出后,又由蜗室将起汇集起来,进而通过排气管道输送至冷凝器,这样就完成了对制冷剂蒸气的压缩。
5、工作中制冷剂混油少,因而蒸发器和冷凝器的传热性能好;
9、稳定工况区较窄,气量调节虽较方便但经济性较差。
离心式压缩机使用于不同的制冷剂和蒸发温度时,其缸数、段数(按中间冷却器分段)和级数相差很大,总体结构上也有差异,但组成部件不会改变,各部件的原理也相同。
叶轮:是压缩视中对气体作功的惟一部件,它由轮盘、叶片和轮盖所组成。叶轮随主轴高速旋转后,气体受旋转离心力和流道中扩压流动的作用。使气体的压力和速度在离开叶轮时都得到提高。
吸气室:使气体在进入叶轮之前形成一个负压,以便将气体均匀地引入叶轮,以减少进口损失。
进口导叶:空调用压缩机在叶轮之前装有进口导叶,若改变其角度即可改变进入叶轮流量的大小,达到调节制冷量的目的。
扩压器:无叶和有叶两种。无叶扩压器是由两侧隔板组成的环行通道,随着径向距离的增大,截面通道面积也随之增加,使从叶轮出口出来的高速气体速度逐渐减慢,压力得到提高;有叶扩压器是在流道中装有叶片,在同样直径下,流道面积增加更多,因而气流速度减小更快,压力增加更多。
弯道和回流器:把从扩压器出口后的气体引到下一级去继续压缩,弯道使气体转弯。回流器中有导向叶片.使气体均匀地引入到下一级叶轮人口。
蜗室:将从扩压器或叶轮后的气体汇集起来并引向机外。蜗室的通道面积是逐渐增大的.其出口接一段扩压管,对气体起到降速扩压作用。
除上述外,压缩机还有其它一些部件。如:减少气体从叶轮出口倒流到叶轮入口的轮盖密封;减少级间漏气的轴套密封;开启式机组还有轴端密封;减少轴向推力的平衡盘;承受转子剩余轴向推力的推力轴承及径向轴承等。
为了使压缩机持续、安全和高效地运行,还设置一些辅助设备和系统,如增速器、联轴器、润滑系统、冷却系统、自动控制、监测及安全保护系统等。
“喘振”应该是离心式制冷压缩机特有的一个特征。它表现在当单级离心式制冷压缩机在低负荷下(额定负荷的25%以下)运行时,容易发生“喘振”,造成周期性地增大噪声和振动,严重时甚至损坏压缩机。
当压缩机的进口流量小到足够的时候,会在整个扩压器流道中产生严重的旋转失速,压缩机的出口压力突然下降,使管网的压力比压缩机的出口压力高,迫使气流倒回压缩机,一直到管网压力降到低于压缩机出口压力时,压缩机又向管网供气,压缩机又恢复正常工作。
当管网压力又恢复到原来压力时,流量仍小于机组喘振流量,压缩机又产生旋转失速,出口压力下降,管网中的气流又倒流回压缩机。如此周而复始,一会气流输送到管网,一会又倒回到压缩机,使压缩机的的流量和出口压力周期的大副波动,引起压缩机的强烈气流波动,这种现象就叫做压缩机的喘振。一般管网容量大,喘振振幅就大,频率就低,反之,管网容量小,喘振的振幅就小,频率就高。
1、压缩机的工况及不稳定,压缩机的出口压力和入口流量周期性的大幅度波动,频率教低,同时平均排气压力值下降。
3、机器强烈振动。机体、轴承、管道的振幅急剧增加,由于振动剧烈、轴承润滑条件遭到破坏,损坏轴瓦。转子与定子会产生摩擦、碰撞,密封元件将严重损坏。
1、防止进气压力低、进气温度高、和气体分子量小等。
3、要坚持在开、停车过程中,升降速不可太快,并且先升速后升压和先降压后降速。
4、开、关防喘阀时平稳缓慢。关防喘阀时要先低压后高压,开防喘时要先高压后低压 如万一出现“旋转失速”和“喘振”时,首先应全部打开防喘阀,增加压缩机的流量,然后再根据具体情况进行处理。
1、压缩机转子上叶轮等零部件不均匀磨损或掉块,压缩机的不均匀穿声腐蚀,造成转子不平衡。
2、固定在转子的某些零件产生松动、变形和位移,使转子重心改变。
3、转子中有残余应力,在一定条件下,该残余应力使转子弯曲。
4、定子部件与转子部件间隙过小,产生摩擦,转子受摩擦而局部升温而产生弯曲变形。
免费打赏
APP内打开