1、请简述水泵的定义及其分类?
答: 定义: 水泵是输送和提升液体的机器,它将原动机的机械能转化为被输送液体的动能或势能。
分类:叶片式水泵、容积式水泵、其它类型水泵(螺旋泵、射流泵、水锤泵、水轮泵、气升泵等)。
答:离心泵在启动前,应先用水灌满泵壳及吸水管道,然后驱动电机,使叶轮和水作高速旋转运动,此时水受到离心力的作用被甩出叶轮,经蜗壳中的流道而流入水泵的压水管道,由压水管道而输入管网中,与此同时,水泵叶轮中心处由于水被甩出而形成真空,吸水池中的水便在大气压的作用下,沿吸水管而源源不断的流入叶轮吸水口,又受到高速旋转的叶轮的作用,被甩出叶轮而输入压水管道,这样,就形成了离心泵的连续输水。
答:由水泵的特性曲线可知,每一台水泵在一定的转速下,都有它自己固有的特性曲线,此曲线反映了该水泵本身潜在的工作能力,这种潜在的工作能力,在现实运行中,就表现为瞬时的实际出水量、扬程、轴功率及效率值等,这些曲线上的实际位置,称之为水泵装置的瞬时工况点,它表示了该水泵在此瞬时的实际工作能力。
定速运行工况是指水泵在恒定转速运行情况下,对应于相应转速在特性曲线上的工况值的确定。
调速运行工况是指水泵在可调速的电动机驱动下运行,通过改变转速来改变水泵装置的工况点。
答:由于叶片泵的叶轮构造和水力性能的多种多样性,大小尺寸也各不相同,为了对整个叶片泵进行分类,将同类型的水泵组成一个系列,这就需要有一个能够反映泵共性的综合性的特征数,作为水泵规范化的基础,这个特征数称为水泵的相似准数,又称比转数。
答:在压力管道中,由于水流流速的剧烈变化而引起一系列剧烈的压力交替升降的水力冲击现象,称为水锤。
泵站中常见的水锤主要有三大类: 关阀水锤、停泵水锤及启泵水锤。
关阀水锤是指管路系统中阀门关闭所引起的水锤;
停泵水锤是指水泵机组因突然失电或其它原因,造成开阀停机时,在水泵及管路中水流流速发生剧变而引起的压力传递现象。
启泵水锤是指水泵机组转速从零到达额定值或从启动到正常出水过程中所产生的水锤。
常用的防护措施如下:
关阀水锤的防护主要通过调节阀门的关闭规律,减小水锤压力;
启泵水锤的防护主要是保证管道中气体能顺利通畅的排除出管道;
停泵水锤的防护措施主要包括:
增大机组的GD2;B)阀门调节防护;C)空气罐防护;D)空气阀防护;E)调压塔防护;F)单向塔防护;
答:水泵选择主要要点:大小兼顾,调度灵活;型号整齐,互为备用;合理的用尽各水泵的高效段;留有足够的发展空间;大中型泵站需作选泵方案比较。即工作水泵的型号及台数应根据逐时、逐日和逐季水量变化、水压要求、水质情况、调节水池大小、机组的效率和功率因素等,综合考虑确定。当供水量变化大且水泵台数较少时,应考虑大小规格搭配,但型号不宜过多,电机的电压宜一致。
答:水泵吸水井、进水流道及安装高度等应根据泵型、机组台数和当地自然条件等因素综合确定。根据使用条件和维修要求,吸水井宜采用分格。
非自灌充水水泵应分别设置吸水管。设有3台或3台以上的自灌充水水泵,如采用合并吸水管,其数量不宜少于两条,当一条吸水管发生事故时,其余吸水管仍能通过设计水量。
吸水管布置应避免形成气囊,吸水口的淹没深度应满足水泵运行的要求。
吸水井布置应满足井内水流顺畅、流速均匀、不产生涡流,且便于施工及维护。大型混流泵、轴流泵宜采用正向进水,前池扩散角不宜大于40°。
水泵安装高度应满足不同工况下必需气蚀余量的要求。
湿式安装的潜水泵最低水位应满足电机干运转的要求。干式安装的潜水泵必须配备电机降温装置。
答:单排布置时,相邻两个机组及机组至墙壁间的净距:电动机容量不大于55kW时,不小于1.0m;电动机容量大于55kW时,不小于1.2m。当机组竖向布置时,尚需满足相邻进、出水管道间净距不小于0.6m。
双排布置时,进、出水管道与相邻机组间的净距宜为0.6~1.2m。
当考虑就地检修时,应保证泵轴和电动机转子在检修时能拆卸。
答:满足机电设备布置安装运行和检修的要求;满足泵房结构布置的要求;满足泵房内通风采暖和采光要求,并符合防潮防火防噪声等技术规定和泵站设计规范;满足内外交通运输的要求;注意建筑造型做到布置合理适用美观。
答:明管转弯处必须设置镇墩。在明管直线段上设置的镇墩间距不宜超过100m。两镇墩之间的管道应设伸缩节,伸缩节应布置在上端;管道支墩的型式和间距应经技术分析和经济比较确定。除伸缩节附近处,其他各支墩宜采用等间距布置。预应力钢筋混凝土管道应采用连续管座或每节设2个支墩;管间净距不应小于0.8m,钢管底部应高出管道槽地面0.6m,预应力钢筋混凝土管承插口底部应高出管槽地面0.3m;管槽应有排水设施。坡面宜护砌。当管槽纵向坡度较陡时,应设人行阶梯便道,其宽度不宜小于1.0m;当管径大于或等于1.0m且管道较长时,应设检查孔。每条管道设置的检查孔不宜少于2个;在严寒地区冬季运行时,可根据需要对管道采取防冻保温措施。
答:埋管管顶最小埋深应在最大冻土深度以下;埋管宜采用连续垫座。圬工垫座的包角可取90o-135o;管间净距不应小于0.8m;埋入地下的钢管应做防锈处理;当地下水对钢管有侵蚀作用时,应采取防侵蚀措施;埋管上回填土顶面应做横向及纵向排水沟;埋管应设检查孔,每条管道不宜少于2个。
答:混凝土强度等级:预应力钢筋混凝土不得低于C40;预制钢筋混凝土不得低于C25;现浇钢筋混凝土不得低于C20;
现浇钢筋混凝土管道伸缩缝的间距应按纵向应力计算确定,且不宜大于20m。在软硬两种地基交界处应设置伸缩缝或沉降缝;
预制钢筋混凝土管道及预应力钢筋混凝土管道在直线段每隔50-100m宜设一个安装活接头。管道转弯和分岔处宜采用钢管件连接,并设置镇墩。
答:给水系统由相互联系的一系列构筑物和输配水管网组成,主要包括:取水构筑物、水处理构筑物、泵站、输水管渠和管网、调节构筑物等。
答:地形高差大的城镇给水系统宜采用分压供水。对于远离水厂或局部地形较高的供水区域,可设置加压泵站,采用分区供水。
当用水量较大的工业企业相对集中,且有合适水源可利用时,经技术经济比较可独立设置工业用水给水系统,采用分质供水。
当给水系统采用区域供水,向范围较广的多个城镇供水时,应对采用原水输送或清水输送以及输水管路的布置和调节水池、增压泵站等的设置,作多方案技术经济比较后确定。
答:当按直接供水的建筑层数确定给水管网水压时,其用户接管处的最小服务水头,一层为10m ,二层为12m,二层以上每增加一层增加4m。
答:综合生活用水 ( 包括居民生活用水和公共建筑用水 ) ;工业企业用水;浇洒道路和绿地用水;管网漏损水量;未预见用水;消防用水。
答:日变化系数是指一年中,最高日用水量与平均日用水量的比值;在缺乏实际用水资料情况下,最高日城市综合用水的时变化系数宜采用1.2~1.6。
时变化系数是指在最高用水量的一天中,最高一小时用水量与平均时用水量的比值;在缺乏实际用水资料情况下日变化系数宜采用1.1~1.5。
答:尽量缩短管线的长度,尽量避开不良地质构造(地质断层、滑坡等)处,尽量沿现有或规划道路敷设;减少拆迁,少占良田,少毁植被,保护环境;施工、维护方便,节省造价,运行安全可靠。
答:从水源至净水厂的原水输水管(渠)的设计流量,应按最高日平均时供水量确定,并计入输水管(渠)的漏损水量和净水厂自用水量。
从净水厂至管网的清水输水管道的设计流量,应按最高日最高时用水条件下,由净水厂负担的供水量计算确定。
答:按照城市规划平面图布置管网,布置时应考虑给水系统分期建设的可能,并留有充分的发展余地;管网的布置必须保证供水安全可靠,当局部管网发生事故时,断水范围应减到最小;管线遍布在整个给水区内,保证用户有足够的水量和水压;力求以最短距离敷设管线,以降低管网造价和供水能量费用。
答:求出沿线流量和节点流量;求出管段计算流量;确定各管段的管径和水头损失;进行管网水力计算或技术经济计算;确定水泵扬程和水塔高度;管网复核计算。
答:比流量:在管网的计算中,如果按照实际用水情况来计算管网,非但很少可能,并且因用户用水量经常变化也没有必要,因此,在计算时往往加以简化,即假定用水量均匀分布在全部干管上,由此得出的干管单位长度的流量,称为比流量;
沿线流量:供给该管段两侧用户所需的流量;
节点流量:从沿线流量折算得出的并且假设是在节点集中流出的流量。
答:求出管路系统的比流量;求出沿线流量;求出节点流量;求出各干管管段的管径;求出各干管节点水头;确定水塔的高度及泵站水泵的扬程。
答:初步判定各管段水流方向并选好控制点;从二级泵站到控制点间,选几条主要平行干管,进行流量预分配,干管内流量尽可能相似;按照假定的水流方向及分配的流量进行管网水力平差计算,直到符合要求为止;得出各管段的实际流量及方向。
答:配水管网应按最高日最高时供水量及设计水压进行水力平差计算,并应分别按下列 3 种工况和要求进行校核:
发生消防时的流量和消防水压的要求;最大转输时的流量和水压的要求;最不利管段发生故障时的事故用水量和设计水压要求。
答:输配水管道材质的选择,应根据管径、内压、外部荷载和管道敷设区的地形、地质、管材的供应,按照运行安全、耐久、减少漏损、施工和维护方便、经济合理以及清水管道防止二次污染的原则,进行技术、经济、安全等综合分析确定。
答:金属管道内防腐宜采用水泥砂浆衬里,外防腐宜采用环氧煤沥青、胶粘带等涂料。
金属管道敷设在腐蚀性土中以及电气化铁路附近或其他有杂散电流存在的地区时,为防止发生电化学腐蚀,应采取阴极保护措施(外加电流阴极保护或牺牲阳极)。
答:清水池的有效容积,应根据产水曲线、送水曲线、自用水量及消防储备水量等确定,并满足消毒接触时间的要求。当管网无调节构筑物时,在缺乏资料情况下,可按水厂最高日设计水量的 10%~20%确定。
答:水源的选用应通过技术经济比较后综合考虑确定,并应符合下列要求:
水体功能区划所规定的取水地段;可取水量充沛可靠;原水水质符合国家有关现行标准;与农业、水利综合利用;取水、输水、净水设施安全经济和维护方便;具有施工条件。
答:取水工程是给水工程的重要组成部分之一。它的任务是从水源地取水,并送至水厂或用户。
答:用地下水作为供水水源时,应有确切的水文地质资料,取水量必须小于允许开采量,严禁盲目开采。地下水开采后,不引起水位持续下降、水质恶化及地面沉降。
用地表水作为城市供水水源时,其设计枯水流量的年保证率应根据城市规模和工业大用户的重要性选定,宜采用90%~97%。
答:位于水质好、不易受污染的富水地段;尽量靠近主要用水地区;施工、运行和维护方便;尽量避开地震区、地质灾害区和矿产采空区。
答:管井适用于含水层厚度大于4m,底板埋藏深度大于8m;大口井适用于含水层厚度在5m 左右,底板埋藏深度小于15m;渗渠仅适用于含水层厚度小于5m,渠底埋藏深度小于6m;泉室适用于有泉水露头,流量稳定,且覆盖层厚度小于5m。
答:有防止地面污水和非取水层水渗入的措施;在取水构筑物的周围,根据地下水开采影响范围设置水源保护区,并禁止建设各种对地下水有污染的设施;过滤器有良好的进水条件,结构坚固,抗腐蚀性强,不易堵塞;大口井、渗渠和泉室应有通风设施。
答:大口井的深度不宜大于15m,其直径应根据设计水量、抽水设备布置和便于施工等因素确定,但不宜超过10m。
答:进人孔应采用密封的盖板,盖板顶高出地面不得小于0.5m。
井口周围应设不透水的散水坡,其宽度一般为 1.5m;在渗透土壤中散水坡下面还应填厚度不小于1.5m的粘土层,或采用其他等效的防渗措施。
答:水流速度为0.5~0.8m/s;充满度为0.4~0.8;内径或短边长度不小于600mm;管底最小坡度大于或等于0.2%。
答:位于水质较好的地带;靠近主流,有足够的水深,有稳定的河床及岸边,有良好的工程地质条件;尽可能不受泥沙、漂浮物、冰凌、冰絮等影响;不妨碍航运和排洪,并符合河道、湖泊、水库整治规划的要求;尽量靠近主要用水地区;
供生活饮用水的地表水取水构筑物的位置,应位于城镇和工业企业上游的清洁河段。
答:当泵房在渠道边时,为设计最高水位加0.5m;当泵房在江河边时,为设计最高水位加浪高再加0.5m,必要时尚应增设防止浪爬高的措施;泵房在湖泊、水库或海边时,为设计最高水位加浪高再加0.5m,并应设防止浪爬高的措施。
答:(1)位于江河上的取水构筑物最底层进水孔下缘距河床的高度,应根据河流钓水文和泥沙特性以及河床稳定程度等因素确定,并应分别遵守下列规定:
侧面进水孔不得小于0.5m,当水深较浅、水质较清、河床稳定、取水量不大时,其高度可减至0.3m;顶面进水孔不得小于1.0m;
(2)取水构筑物淹没进水孔上缘在设计最低水位下的深度,应根据河流的水文、冰情和漂浮物等因素通过水力计算确定,并应分别遵守下列规定:
顶面进水时,不得小于0.5m;侧面进水时,不得小于0.3m;
虹吸进水时,不宜小于1.0m,当水体封冻时,可减至0.5m。
答:取水构筑物进水孔应设置格栅,栅条间净距应根据取水量大小、冰絮和漂浮物等情况确定,小型取水构筑物宜为30~50mm,大、中型取水构筑物宜为80~120mm。当江河中冰絮或漂浮物较多时,栅条间净距宜取大值。
答:进水孔的过栅流速,应根据水中漂浮物数量、有无冰絮、取水地点的水流速度、取水量大小、检查和清理格栅的方便等因素确定,宜采用下列数据:
岸边式取水构筑物,有冰絮时为0.2~0.6m/s;无冰絮时为0.4~1.0m/s;河床式取水构筑物,有冰絮时为0.1~0.3m/s;无冰絮时为0.2~0.6m/s。
答:进水自流管或虹吸管的数量及其管径,应根据最低水位,通过水力计算确定。其数量不宜少于两条。当一条管道停止工作时,其余管道通过的流量应满足事故用水要求。
进水自流管和虹吸管的设计流速,不宜小于0.6m/s。必要时,应有清除淤积物的措施。
虹吸管宜采用钢管。
答:粉末活性炭投加点宜根据水处理工艺流程综合考虑确定,并宜加于原水中,经过与水充分混合、接触后,再投加混凝剂或氯。
粉末活性炭的用量应根据试验确定,宜为5~30mg/L。
湿投的粉末活性炭炭浆浓度可采用5%~10%(按重量计 ) 。
粉末活性炭的贮藏、输送和投加车间,应有防尘、集尘和防火设施。
答:高锰酸钾宜在水厂取水口加入;当在水处理流程中投加时,先于其它水处理药剂投加的时间不宜少于3min。
经过高锰酸钾预氧化的水必须通过滤池过滤。
高锰酸钾预氧化的药剂用量应通过试验确定并应精确控制,用于去除有机微污染物、藻和控制臭味的高锰酸钾投加量可为0.5~2.5mg/L。
高锰酸钾的用量在12kg/d以上时宜采用干投。湿投溶液浓度可为4%。
答:主要有三种混凝理论,分别是:
电性中和:投入混凝剂提供大量的反离子,由于反离子浓度的增加,扩散层厚度变薄,滑动面上的电位降低,排斥势能降低,当排斥势能与吸引势能相等时便发生凝聚吸附架桥:高分子物质的混凝剂(阳离子型、阴离子型、非离子型)有较强的吸附作用及链状结构,与胶体形成“胶体—高分子—胶体”絮凝体,高分子物质起架桥作用。
网捕或卷扫:当铝盐或铁盐混凝剂投量很大而形成大量氢氧化物沉淀时,可以网捕、卷扫水中教理以致产生沉淀分离,称之为卷扫或网捕作用。
答:无机混凝剂主要包括:吕系(硫酸铝、明矾、聚合氯化铝(PAC)、聚合硫酸铝(PSC)等);铁系(三氯化铁、硫酸亚铁、聚合氯化铁(PFC)、聚合硫酸铁(PFS)等)。
有机高分子混凝剂:阳离子型、阴离子性、两性型、非离子型。
答:絮凝时间宜为20~30min;絮凝池廊道的流速,应按由大到小渐变进行设计,起端流速宜为0.5~0.6m/s,末端流速宜为0.2~0.3m/s;隔板间净距宜大于0.5m。
答:絮凝时间为15~20min;池内设3~4挡搅拌机;搅拌机的转速应根据浆板边缘处的线速度通过计算确定,线速度宜自第一挡的0.5m/s逐渐变小至末挡的0.2m/s;池内宜设防止水体短流的设施。
答:絮凝时间为12~20min。
絮凝过程中的速度应逐段降低,分段数不宜少于三段,各段的流速可分别为:
第一段:0.25~0.35m/s;第二段:0.15~0.25m/s;第三段:0.10~0.15m/s。
折板夹角采用90°~120°。