56. 石油类的测定方法有哪些? 石油是由烷烃、环烷烃、芳香烃以及不饱和烃和少量硫、氮氧化合物所组成的一种复杂的混合物。水质标准中将石油类规定为保护水生生物的毒理学指标及人体感官指标,是因为石油类物质对水生生物的影响很大。当水中石油类的含量在0.01~0.1mg/L时,就会干扰水生生物的摄食和繁殖。因此,我国渔业水质标准规定不得超过0.05mg/L,农灌用水标准规定不得超过5.0mg/L,污水综合排放二级标准规定不得超过10mg/L。一般进入曝气池的污水石油类的含量不能超过50mg/L。
石油是由烷烃、环烷烃、芳香烃以及不饱和烃和少量硫、氮氧化合物所组成的一种复杂的混合物。水质标准中将石油类规定为保护水生生物的毒理学指标及人体感官指标,是因为石油类物质对水生生物的影响很大。当水中石油类的含量在0.01~0.1mg/L时,就会干扰水生生物的摄食和繁殖。因此,我国渔业水质标准规定不得超过0.05mg/L,农灌用水标准规定不得超过5.0mg/L,污水综合排放二级标准规定不得超过10mg/L。一般进入曝气池的污水石油类的含量不能超过50mg/L。
由于石油的成份复杂、性质差异很大,再加上受分析方法所限,很难建立一个适用于各种成份的统一标准。当水中油含量﹥10mg/L时,可使用重量法进行测定,其缺点是操作复杂、轻质油在蒸除石油醚和烘干时易损失。当水中油含量为0.05~10mg/L时,可使用非分散红外光度法、红外分光光度法和紫外分光光度法进行测定,其中非分散红外光度法和红外光度法是检测化验石油类的国家标准(GB/T16488—1996)。紫外分光光度法是以分析嗅味、毒性较大的芳烃为主,是指能被石油醚萃取出、并能在特定波长下有吸收特征的物质,并不能包括所有的石油类。
分散红外光度法和红外光度法使用的萃取剂是四氯化碳或三氯三氟乙烷,重量法和紫外分光光度法使用的萃取剂是石油醚。这些萃取剂都有毒,因此操作时必须谨慎小心,并在通风橱内进行。
标准油应当采用待监测污水中的石油醚或四氯化碳萃取物,有时也可使用其他被认定的标准油品,或用正十六烷、异辛烷和苯按65:25:10的体积比配制而成。萃取标准油、标准油曲线绘制及测定废水样品所用的石油醚应为同一批号,否则会因为空白值不同而产生系统误差。
测定油时要单独采样,采样瓶一般使用广口玻璃瓶,切不可使用塑料瓶,而且水样不能装满采样瓶,上面应留有空隙。水样如果不能当天分析,可加入盐酸或硫酸使其pH值﹤2,以抑制微生物的生长,并置于4oC冷藏箱内保存。分液漏斗上的活塞不能涂抹凡士林等油性润滑油脂。
58. 常见重金属及无机性非金属有毒有害物质水质指标有哪些?
常见的水中重金属及无机性非金属有毒有害物质主要有汞、镉、铬、铅及硫化物、氰化物、氟化物、砷、硒等,这些水质指标都是保证人体健康或保护水生生物的毒理学指标。国家污水综合排放标准(GB 8978-1996)对含有这些物质的污水排放指标作出了严格的规定。
对于来水中含有这些物质的污水处理场,必须认真检测进水和二沉池出水的这些有毒有害物质的含量,以保证达标排放。一旦发现进水或出水超标,都应当立即采取措施,通过加强预处理和调整污水处理运行参数,使出水尽快达标。在常规的二级污水处理中,硫化物和氰化物是两种最常见的无机性非金属有毒有害物质水质指标。
硫在水中存在的主要形式有硫酸盐、硫化物和有机硫化物等,其中硫化物有H2S、HS-、S2-等三种形式,每种形式的数量与水的pH值有关,在酸性条件下,主要以H2S形式存在,pH值﹥8时,主要以HS-、S2-形式存在。水体中检出硫化物,往往可说明其已受到污染。某些工业尤其是石油炼制排放的污水中常含有一定量的硫化物,在厌氧菌的作用下,水中的硫酸盐也能还原成硫化物。
必须认真分析化验污水处理系统有关部位污水的硫化物含量,以防出现硫化氢中毒现象。尤其是对汽提脱硫装置的进出水,因硫化物含量高低直接反映了汽提装置的效果,是一项控制指标。为防止自然水体中硫化物过高,国家污水综合排放标准规定硫化物含量不得超过1.0mg/L,采用好氧二级生物处理污水时,如果进水硫化物浓度在20mg/L以下,在活性污泥性能良好并及时排出剩余污泥的情况下,二沉池出水的硫化物是能够达标的。必须定时监测二沉池出水硫化物的含量,以便观察出水是否达标和确定如何调整运行参数。
常用检测水中硫化物含量的方法有亚甲蓝分光光度法、对氨基N,N二甲基苯胺分光光度法、碘量法、离子电极法等,其中有国家标准的硫化物测定方法是亚甲基蓝分光光度法(GB/T16489—1996)和直接显色分光光度法(GB/T17133—1997),这两种方法的检出限分别为0.005mg/L和0.004mg/l,在水样不稀释的情况下,最高检测浓度分别为0.7mg/L和25mg/L。对氨基N,N二甲基苯胺分光光度法(CJ/T60--1999)测定的硫化物浓度范围为0.05~0.8mg/L,因此,以上分光光度法只适用于检测硫化物含量较低的水样。当废水中硫化物浓度较高时,可以使用碘量法(HJ/T60—2000和CJ/T60--1999),碘量法的检测浓度范围为1~200mg/L。
当水样浑浊、有色或含有SO32-、S2O32-、硫醇、硫醚等还原性物质时,对测定干扰严重,需要进行预分离以消除干扰,常用的预分离方法是酸化-吹脱-吸收法。其原理是将水样酸化后,硫化物在酸性溶液中以H2S分子状态存在,用气体将其吹出,再用吸收液吸收,然后进行测定。
具体做法是首先在水样中加入EDTA,以络合稳定大部分金属离子(如Cu2+、Hg2+、Ag+、Fe3+),避免这些金属离子与硫离子反应引起的干扰;还要加入适量盐酸羟胺,可以有效防止水样中氧化性物质与硫化物发生氧化还原反应。从水中吹取H2S时,搅拌比不搅拌回收率显著高,在搅拌下吹脱15min硫化物回收率可达100%;在搅拌下吹脱时间超过20min时,回收率略有下降。因此,通常在搅拌下吹脱,吹脱时间为20min。当水浴温度为35~55oC时,硫化物回收率能达到100%,水浴温度为65oC以上时,硫化物回收率略有降低。因此,一般选取最佳水浴温度为35~55oC。
⑴由于水中硫化物的不稳定,在水样采集时,不能对取样点曝气和剧烈搅动,采集后,要及时加入乙酸锌溶液,使之成为硫化锌混悬液。当水样为酸性时,应当补加碱溶液以防释放出硫化氢,水样满瓶后加塞,尽快送化验室进行分析。
⑵无论采用哪种方法分析,都必须对水样进行预处理以消除干扰和提高检测水平。呈色物、悬浮物、SO32-、S2O32-、硫醇、硫醚以及其他还原性物质的存在,都会影响分析结果。消除这些物质的干扰的方法,可以采用沉淀分离、吹气分离、离子交换等。
⑶用于稀释和试剂溶液配制的水不能含有Cu2+和Hg2+等重金属离子,否则会因生成酸不溶硫化物使分析结果偏低,因此不要使用金属蒸馏器制得的蒸馏水,最好使用去离子水或全玻璃蒸馏器蒸得的蒸馏水。
⑷同样乙酸锌吸收液中含有痕量重金属时也会影响测定结果,可以在充分振摇下,向1L乙酸锌吸收液中逐滴加入1mL新制备的0.05mol/L硫化钠溶液,静置过夜,再旋转摇动后用质地细密的定量滤纸过滤,弃去除滤液,这样可以排除吸收液中痕量重金属的干扰。
⑸硫化钠标准溶液极不稳定,浓度越低越容易变化,必须于用前配制并立即标定。用于配制标准溶液的硫化钠结晶表面常含有亚硫酸盐,从而造成误差,最好取用大颗粒结晶,并用水快速淋洗洗去亚硫酸盐后再称量。
氰化物的常用分析方法是容量滴定法和分光光度法,GB7486—87和GB7487—87分别规定了总氰化物和氰化物的测定方法。容量滴定法适用于高浓度氰化物水样的分析,测定范围为1~100mg/L;分光光度法有异烟酸 - 吡唑啉酮比色法和砒啶-巴比妥酸比色法两种,适用于低浓度氰化物水样的分析,测定范围为0.004~0.25mg/L。
容量滴定法的原理是用标准硝酸银溶液滴定,氰离子与硝酸银生成可溶性银氰络合离子,过量的银离子与试银灵指示液反应,溶液由黄色变成橙红色。分光光度法的原理是在中性条件下,氰化物与氯胺T反应生成氯化氰,氯化氰再与砒啶反应生成戊烯二醛,戊烯二醛与砒唑啉酮或巴比妥酸生成蓝色或红紫色染料,颜色的深浅与氰化物的含量成正比。
滴定法和分光光度法测定时都存在一些干扰因素,通常需要加入特定药剂等预处理措施,并进行预蒸馏。当干扰物质浓度不是很大时,只通过预蒸馏即可达到目的。
⑴氰化物有剧毒,砒啶也有毒,分析操作时要格外小心谨慎,必须在通风橱内进行,避免沾污皮肤和眼睛。当水样中干扰物质浓度不是很大时,通过酸性条件下的预蒸馏,使简单氰化物转变为氰化氢从水中释放出来,再使之通过氢氧化钠洗涤液而收集起来,即可将简单氰化物和络合氰化物区分开来,并使氰化物浓度提高、降低检出限值。
⑵水样中干扰物质浓度较大,就应当首先采取有关措施,消除其影响。氧化剂的存在,会使氰化物分解,如果怀疑水中有氧化剂,可以采取加入适量硫代硫酸钠的方法排除其干扰。水样应贮存于聚乙烯瓶中,采集后,应在24h内进行分析。必要时,应加入固体氢氧化钠或浓氢氧化钠溶液,使水样pH值提高到12~12.5。
⑶硫化物在酸性蒸馏时,可呈硫化氢态被蒸出,并被碱液吸收,因此必须预先除去。除硫的方法有两个,一是在酸性条件下,加入不能氧化CN-的氧化剂(如高锰酸钾)将S2-氧化后再蒸馏;二是加入适量CdCO3或CbCO3固体粉末,使生成金属的硫化物沉淀,将沉淀过滤后再蒸馏。
⑷在酸性蒸馏时,油类物质也可被蒸出,此时可以用(1+9)醋酸调节水样pH值至6~7后,迅速用水样体积20%的己烷或氯仿进行一次(不可多次)萃取,随后立即用氢氧化钠溶液水样pH值提高到12~12.5再蒸馏。
⑸含高浓度的碳酸盐的水样在酸性蒸馏时,会释放出二氧化碳被氢氧化钠洗涤液收集而影响测定结果。遇高浓度的碳酸盐的污水时,可用氢氧化钙代替氢氧化钠固定水样,使水样pH值提高到12~12.5并经过沉淀后,再倾上清液于样品瓶中。
⑹采用光度法测定氰化物时,反应溶液的pH值直接影响显色的吸光值。因此,必须严格控制吸收液的碱浓度,注意磷酸盐缓冲液的缓冲容量。在加入一定量的缓冲液后,需注意测定是否能达到最适的pH值范围。另外,在磷酸盐缓冲液配制之后,必须以pH计测量其pH值,了解其是否符合要求,以避免因试剂不纯或含有结晶水而出现较大的偏差。
⑺氯铵T的有效氯含量的改变,也是氰化物测定不准的常见原因。当出现不显色或显色不呈线性、灵敏度低等现象时,除了溶液pH值出现偏差这个原因以外,往往与氯铵T质量有关。因此,氯铵T的有效氯的含量必须在11%以上,已分解或配制后出现混浊沉淀物的不能再用。
在好氧生物处理过程中,不管采用何种构筑物的形式及何种工艺流程,都是通过处理系统中的活性污泥和生物膜微生物的代谢活动,将废水中的有机物氧化分解为无机物,从而使废水得到净化。处理后出水水质的好坏都同组成活性污泥和生物膜微生物的种类、数量及代谢活力等有关。废水处理构筑物的设计及日产运行管理主要是为活性污泥和生物膜微生物提供一个较好的生活环境条件,以便发挥其最大的代谢活力。
在废水生物处理过程中,微生物是一个综合群体:活性污泥由多种微生物组成,各种微生物之间必然相互影响,并共同栖息于一个生态平衡的环境中。不同种类的微生物在生物处理系统中,都有自己的生长规律。比如说,有机物浓度较高时,微生物是以有机物为食料的细菌占优势,数量自然最多。而当细菌数量多时,必然出现以细菌为食料的原生动物,再后出现以细菌和原生动物为食料的微型后生动物。
活性污泥中微生物的生长规律,有助于通过微生物镜检去掌握废水处理过程的水质情况。如果镜检中发现有大量鞭毛虫存在,说明废水中有机物浓度还较高,需要作进一步处理;当镜检发现游动型纤毛虫时,表明废水已经得到一定程度的处理;当镜检发现固着型纤毛虫,而游动型纤毛虫数量不多见时,则表明废水中有机物和游离细菌已相当少,废水已经接近稳定;当镜检发现轮虫时,表明水质已经比较稳定。
生物相镜检一般只能作为对水质总体状况的估计,是一种定性的检测,不能作为废水处理厂出水水质的控制指标。为了监测微型动物演替变化状况,还需要定时进行记数。
活性污泥和生物膜是生物法处理废水的主体,污泥中微生物的生长、繁殖、代谢活动以及微生物种类之间的演替情况可以直接反应处理状况。和有机物浓度及有毒物质的测定相比,生物相镜检要简便得多,随时可以了解活性污泥中原生动物种类变化和数量消长情况,由此可以初步判断污水的净化程度,或进水水质和运行条件是否正常。因此,除了利用物理、化学的手段来测定活性污泥的性质,还可以借助于显微镜观察微生物的个体形态、生长运动以及相对数量状况来判断废水处理的运行情况,以便及早发现异常情况,及时采取适当的对策,保证处理装置运行稳定,提高处理效果。
低倍镜观察是为了观察生物相的全貌,要注意观察污泥絮粒的大小,污泥结构的松紧程度,菌胶团和丝状菌的比例极其生长状况,并加以记录和作出必要的描述。污泥絮粒大的污泥沉降性能好,抗高负荷冲击能力强。
污泥絮粒按平均直径的大小可以分为三等:污泥絮粒平均直径﹥500μm的称为大粒污泥,﹤150μm为小粒污泥,介于150~500μm之间的为中粒污泥。
污泥絮粒性状是指污泥絮粒的形状、结构、紧密程度及污泥中丝状菌的数量。镜检时可把近似圆形的污泥絮粒称为圆形絮粒,与圆形截然不同的称为不规则形状絮粒。
絮粒中网状空隙与絮粒外面悬液相连的称为开放结构,无开放空隙的称为封闭结构。絮粒中菌胶团细菌排列致密,絮粒边缘与外部悬液界限清楚的称为紧密絮粒,边缘界限不清的成为疏松絮粒。
实践证明,圆形、封闭、紧密的絮粒相互间易于凝聚、浓缩,沉降性能良好,反之则沉降性能差。
用高倍镜观察,可以进一步看清微型动物的结构特征,观察时要注意微型动物的外形和内部结构,例如钟虫体内是否存在食物胞,纤毛虫的摆动情况等。观察菌胶团时,应注意胶质的厚薄和色泽,新生菌胶团出现的比例等。观察丝状菌时,要注意丝状菌体内是否有类脂物质和硫粒积累,同时注意丝状菌体内细胞的排列、形态和运动特征以便初步判断丝状菌的种类(进一步鉴别丝状菌的种类需要使用油镜并将活性污泥样品染色)。
活性污泥中丝状微生物包括丝状细菌、丝状真菌、丝状藻类(蓝细菌)等细胞相连且形成丝状的菌体,其中以丝状细菌最为常见,它们同菌胶团细菌一起,构成了活性污泥絮体的主要成分。丝状细菌具有很强的氧化分解有机物的能力,但由于丝状细菌的比表面积较大,当污泥中丝状菌超过菌胶团细菌而占优势生长时,丝状菌从絮粒中向外伸展,阻碍絮粒间的凝聚使污泥SV值SVI值升高,严重时会造成污泥膨胀现象。因此,丝状细菌数量是影响污泥沉降性能的最重要因素。
根据活性污泥中丝状菌与菌胶团细菌的比例,可将丝状菌分成五个等级:①00——污泥中几乎无丝状菌;②±级——污泥中存在少量无丝状菌;③+级——污泥中存在中等数量丝状菌,总量少于菌胶团细菌;④++级——污泥中存在大量丝状菌,总量与菌胶团细菌大致相等;⑤+++级——污泥絮粒以丝状菌为骨架,数量明显超过菌胶团细菌而占优势。
69. 生物相观察应注意活性污泥微生物的哪些变化?
城市污水处理厂活性污泥中微生物种类很多,比较容易地通过观察微生物种类、形态、数量和运动状态的变化来掌握活性污泥的状态。而工业废水处理场活性污泥中会因为水质的原因,可能观察不到某种微生物,甚至完全没有微型动物,即不同的工业废水处理场的生物相会有很大差异。
污泥中的微生物种类会随水质变化,随运行阶段而变化。污泥培养阶段,随着活性污泥的逐渐形成,出水由浊变清,污泥中的微生物发生有规律的演变。正常运行中,污泥微生物种类的变化也遵循一定的规律,由污泥微生物种类的变化可以推测运行状况的变化。比如污泥结构变得松散时,游动纤毛虫较多,而出水混浊变差时,变形虫和鞭毛虫就会大量出现。
当水质发生变化时,微生物的活动状态也会发生一些变化,甚至微生物的形体也会随废水变化而变化。以钟虫为例,纤毛摆动的快慢、体内积累食物泡的多少、伸缩泡的大小等形态都会随生长环境的改变而变化。当水中溶解氧过高或过低时,钟虫的头部常会突出一个空泡。进水中难降解物质过多或温度过低时,钟虫会变得不活跃,其体内可见到食物颗粒的积累,最后会导致虫体中毒死亡。pH值突变时,钟虫体上的纤毛会停止摆动。
活性污泥中的微生物种类很多,但某些微生物数量的变化也能反映出水质的变化。比如丝状菌,在正常运行时适量存在是非常有利的,但其大量出现会导致菌胶团数量的减少、污泥膨胀和出水水质变差。活性污泥中鞭毛虫的出现预示着污泥开始增长繁殖,但鞭毛虫数量增多又往往是处理效果降低的征兆。钟虫的大量出现一般是活性污泥生长成熟的表现,此时处理效果良好,同时可见极少量的轮虫出现。如果活性污泥中轮虫大量出现,则往往意味着污泥的老化或过度氧化,随后就有可能出现污泥解体和出水水质变差。
对活性污泥或生物膜生物相进行镜检后,其结果记录方式可以参考表1。
生物膜法处理系统的生物相特征与活性污泥工艺有所不同,主要表现在微生物种类和分布方面。表9—2列出了生物膜和活性污泥中出现的微生物在类型、种属和数量上的比较。
一般来说,由于水质呈逐级变化的趋势和微生物生长环境条件的改善,生物膜系统存在的微生物种类和数量均比活性污泥工艺多,食物链长且较为复杂,尤其是丝状菌、原生动物和后生动物种类增加较多,而且还有一定比例的厌氧菌和兼性菌。在日光照射到的部位能够出现藻类,还能够出现滤池蝇这样的昆虫类生物。在分布方面的特点是沿生物膜厚度(由表及里)或进水流向(与进水接触时间不同),微生物的种类和数量呈现出较大差异。在多级处理的第一级或下向流填料层的上部,生物膜往往以菌胶团细菌为主,膜厚度亦较大(2~3mm);随着级数的增加或下向流填料层的下部,由于其接触到的水质已经经过部分处理,生物膜中会逐渐出现较多的丝状菌、原生动物和后生动物;微生物的种类不断增多,但生物膜的厚度却在不断减薄(1~2mm)。生物膜的表层的微生物都是好氧性的,而随着厚度的加大,微生物逐渐变成兼性乃至厌氧性。
生物膜固着在滤料或填料上,生物固体停留时间SRT(泥龄)较长,因此能够生长世代时间长、增殖速度很小的微生物,如硝化菌等。在生物膜上还可能出现大量丝状菌,但不会出现污泥膨胀。和活性污泥法相比,生物膜上的生物中动物性营养者比例较大,微型动物的存活率也较高,能够栖息高营养水平生物,在捕食性纤毛虫、轮虫类、线虫类之上还栖息着寡毛类和昆虫。因此,生物膜上的食物链要比活性污泥中的食物链长,这也是生物膜法产生的污泥量少于活性污泥法的原因。
废水水质的不同,每一级或每层填料上的特征微生物也会不同,即水质的变化会引起生物膜中微生物种类和数量的变化。在进水浓度增高时,可以观察到原有层次的特征性微生物下移的现象,即原先在前级或上层填料上的微生物可在后级或下层填料上出现。因此,通过生物相观察发现这样类似的变化来推断废水浓度或污泥负荷的变化。
细菌总数是指1mL水样在营养琼脂培养基中,经37oC、24h培养后所生长的菌落数。计量单位一般是每mL水中所含有的总菌数。水中的细菌总数往往同水体受到有机物污染的程度有关,是评价水质污染程度和对人体可能造成伤害的重要指标之一。
细菌总数的分析方法采用标准平皿法对水样中的细菌记数,这是一种测定水中好氧和兼性厌氧的异养菌密度的方法。但由于没有任何一种营养基或任一环境条件能满足一个水样中所有细菌的生理要求,而且水中细菌能以单独个体、成对、链状、成簇或成团的形式存在,所以测得的菌落数实际上要低于被测水样中真正存活的细菌数目。
用无菌操作法吸取1mL水样或2~3个适宜稀释倍数的稀释水样,注入灭菌平皿中,再倾注15mL营养琼脂培养基并与水样充分混匀,每个水样做两个平行样,另外每次检验还要做只倾注营养琼脂培养基的空白对照。
培养之后,应立即进行平皿菌落计数。如果计数必须暂缓进行,可将平皿存放于5~10oC的环境下,但不能超过24h,而且也不可以将这种做法当作常规的操作方式。
对平皿菌落计数时,可用肉眼观察,为防止遗漏,必要时应用放大镜检查。对那些看来相似、距离相近但并不相触的菌落,只要其距离小于最小菌落的直径,就应当分别予以计数。对那些紧密接触但外观(形态或颜色)有差异的菌落也要分别予以计数。
在求同一稀释度的平均菌落数时,如果其中一个平皿有较大片状菌落生长时,则不宜采用,而应以无片状菌落生长的平皿作为该稀释度的菌落数。如果片状菌落不到平皿的一半、而其余部分菌落的分布又很均匀时,则可以将生长均匀的1/2平皿菌落计数后乘以2代表全皿菌落数。
细菌总数的测定结果是以每个平皿菌落总数或同一稀释度平行实验平皿的平均菌落数乘以稀释倍数。当最终结果在100以内时按实际菌落数记录结果;大于100时,采用两位有效数字,用10的指数来表示,如果菌落数无法计数,在报告结果时要注明稀释倍数。
计算细菌总数的化验结果时,需要根据不同稀释度的平均菌落数进行比较和计算,其方法如下:
⑴首先选择平均菌落数在30~300之间的情况进行计算,当只用一个稀释度的平均菌落数符合此范围时,即以该平均菌落数乘其稀释倍数作为检验水样细菌总数的结果。
⑵如果有两个稀释度的平均菌落数在30~300之间,应当按二者的比值来决定计算方法。如果比值小于2,则以各自的平均菌落数乘以各自的稀释倍数后的平均值作为检验水样细菌总数的结果;比值大于2,则以其中平均菌落数乘以其稀释倍数后的较小者作为检验水样细菌总数的结果。
⑶如果所有稀释度的平均菌落数均大于300,则应当按稀释倍数最大的平均菌落数乘以其稀释倍数作为检验水样细菌总数的结果。
⑷如果所有稀释度的平均菌落数均小于30,则应当按稀释倍数最小的平均菌落数乘以其稀释倍数作为检验水样细菌总数的结果。
⑸如果所有稀释度的平均菌落数均不在30~300之间,则应当以最接近30或300的平均菌落数乘以其稀释倍数作为检验水样细菌总数的结果。
大肠菌群细菌是指一类好氧或兼性厌氧、能发酵乳糖、革兰氏染色阴性、无芽孢的杆菌,因此有时也称粪大肠菌群或大肠杆菌,大肠菌群细菌在乳糖培养基中经37oC、24h培养后,能产酸产气。大肠菌群数(值)一般以1L或100mL水中含有的大肠菌群数量为计量单位。
如果水源被粪便污染,则有可能被肠道病原菌污染而引起肠道传染疾病。由于肠道病原菌在占中微生物数量的比例相对较少,故从水中特别是自来水中分离病原菌常非常困难。大肠菌群细菌是肠道好氧菌中最普遍和数量最多的一类细菌,所以常将其作为粪便污染的指示菌。即根据水中大肠菌群的数目来判断水源是否受粪便所污染,并检测推测水源受肠道病原菌的可能性。
总大肠菌群的常用测定方法有多管发酵法和滤膜法两种。
多管发酵法是根据大肠菌群细菌能发酵乳糖、革兰氏染色阴性、无芽孢、呈杆状等有关特性,通过三个步骤进行检验,来确定水样中的总大肠菌群数。多管发酵法以最可能数Most Probable Number来表示实验结果,又简称MPN,实际上是根据统计学理论估计水体中大肠杆菌密度和卫生质量的一种方法,这种估计有大于实际数字的倾向。对于大肠菌群数含量的估计值,决定于那些既显示阳性又显示阴性的稀释度,在实际设计水样检验所要求重复的数目时,要根据所要求数据的准确度而定。
滤膜法是用特制的灭菌微孔薄膜过滤水样,细菌被截留在膜上后,将薄膜贴在品红亚硫酸钠培养基上进行培养。因为大肠菌群细菌可发酵乳糖,在滤膜上培养培养后会出现紫红色具有金属光泽的菌落,计数滤膜上出现的具有此特征的菌落数,即可计算出每L水样中含有的大肠菌群数。滤膜法可测定的水样体积较大,能比多管发酵法更快地获得结果,但测定浊度高、非大肠杆菌类细菌密度大时,效果较差。
余氯是水经加氯消毒接触一定时间后余留在水中的氯,其作用是保持持续的杀菌能力。从水进入管网到用水点之前,必须维持水中消毒剂的作用,以防止可能出现的病原体危害和再增殖。这就要求向水中投加的消毒剂,其投加量不仅能满足杀灭水中病原体的需要,而且还要保留一定的剩余量防止在水的输送过程中出现病原体的再增殖,如果使用氯消毒,那么超出当时消毒需要的这部分消毒剂就是余氯。
余氯有游离性余氯(Cl2、HOCl和OCl-)和化合性余氯(NH2Cl、NHCl2和NCl3)两种形式,这两种形式能同时存在于同一水样中,两者之和称为总余氯。游离性余氯杀菌能力强,但容易分解,化合性余氯杀菌能力较弱,但在水中持续的时间较长。一般水中没有氨或铵存在时,余氯为游离性余氯,而水中含有氨或铵时,余氯通常只含有化合性余氯,有时是余氯和化合性余氯共存。余氯量必须适当,过低起不到防治病原体的作用,过高则不仅造成消毒成本的增加,而且在人体接触时可能造成对人体的伤害。
从概念上看,余氯是针对氯气及氯系列消毒剂而言的,当使用二氧化氯等其他非氯类消毒剂时,就应该将余氯理解为接触一定时间后留在水中的剩余消毒剂。
78. 余氯的测定方法有哪些?各自的适用范围是什么?
余氯的测定可以使用碘量滴定法、邻联甲苯胺目视比色法、N,N-二乙基对苯二胺(DPD)亚铁滴定法(GB 11897-89)、N,N-二乙基对苯二胺分光光度法(GB 11898-89)等。碘量滴定法只能测定水样中的总余氯;邻联甲苯胺目视比色法通过改变操作程序,能分别测定总余氯和游离性余氯;N,N-二乙基对苯二胺滴定法或分光光度法可测定浓度范围为0.03~5mg/L的游离氯或总氯,通过改变操作程序,还可以分别测定一氯胺、二氯胺和一些化合氯成分。
碘量滴定法适用于总余氯含量大于1mg/L的水样,是测定加氯量常用的方法。邻联甲苯胺目视比色法操作简单,是测定生活饮用水余氯的常用方法,测定范围为0.01~10mg/L。N,N-二乙基对苯二胺滴定法或分光光度法灵敏度高,可测定余氯含量较低的水样,适用于测定含有有机物的污水中的总有效氯,两个方法的测定范围分别为0.05~1.5mg/L和0.03~5mg/L。
氯在水溶液中非常不稳定,特别是在浓度较低时,含量会迅速减少。受到阳光和其他强光的照射或受到搅动,氯的还原速度会加快。因此取样后不能贮存,必须立即开始氯的测定,同时避免光线照射和搅动水样。
在测定过程的所有操作都要避免阳光直接照射,最好在尽可能低的温度下和柔和的光线下进行,而且所有的比色法都需要用颜色和浊度空白来补偿原水的颜色和色度,尤其是浊度和色度较高时必须测定空白值。
使用邻联甲苯胺目视比色法测定余氯时,如果水样与标准邻联甲苯胺溶液混合均匀后立即比色,所测结果是游离性余氯,如果在暗处放置10min使产生最高色度后再进行比色,所得结果是总余氯。总余氯减去游离性余氯即是化合性余氯。
使用邻联甲苯胺目视比色法测定时,如果余氯量大,会产生桔黄色;如果水样碱度过高而余氯量小时,会产生淡绿色或淡蓝色。此时可多加1mL邻联甲苯胺标准溶液,即可产生正常的淡黄色
本文来源于网络,如有侵权,请联系删除
知识点:污水处理常规分析控制指标最全总结(下)
相关推荐: